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• Tooling features
• Tooling in action
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The need for tooling
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Define API

• APIs are published contracts
 Producers specify the contracts

 Honor contracts release after release
 Evolve the contracts for enhancements and fix problems

 Consumers adhere to the contracts
 Implement the contracts per specification
 Use provided implementations per contract specifications
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API Dimensions

API Use 
(Consumer)

API Evolution
(Producer)

Behavior remains constant over time 
as APIs evolve and grow.X X
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What have we done as plug-in developers?
• We use Javadoc™ to document contracts

 This class is not intended to be instantiated or subclassed by 
clients.

 Has no effect if not read
 Inconsistent wording, placement, and use

• Use component.xml to specify APIs
 Out of date, not maintained
 Why? Because there’s no tooling and it’s separate from the code

• We use package names to categorize as public/internal, but all 
packages are exported

• We use OSGi package exports to limit visibility, but does not 
prevent access to internal types

• We use Eclipse’s “access rules” to discourage use, but this can 
be turned off
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More things we do…

• Manually examine API changes or use some external 
tool before a release
 Changes between releases can be significant
 Validation is time consuming and error prone
 Lost development time (due to checking and bugs found)
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Disclaimer

• API design is still your problem
 Designing quality APIs
 Ensuring consistent behavior

• But there are things that tooling can with…
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API Tooling Features
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API Tooling to the Rescue!

• Reports
 Illegal API use
 Binary incompatibility relative to a baseline
 Incorrect bundle version numbers
 Missing or malformed @since tags
 Leakage of non-APIs types inside APIs

• Tightly integrated toolset in the Eclipse SDK
 Currently limited to Plug-in projects/OSGi bundles
 Runs as a builder (auto-build, incremental and full builds)
 Immediate feedback as you develop and use APIs
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Specifying API Contracts
• Use Javadoc tags

 E.g. @noimplement, @noextend, @noreference, @noinstantiate

• Benefits
 Contracts live with the code for producers and consumers
 Content assist helps developers
 Available for projects that are not using 1.5 annotations
 Restrictions appear in published Javadoc APIs in a standard 

way
 Tools can process tags
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Example of Published API
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API Usage

• Once the APIs are specified, the user needs to make 
sure that he/she is using them appropriately.

• API usage is flagging any kind of illegal usage of API: 
reference to an API that is not supposed to be 
referenced, implementation of an interface that is not 
supposed to be implemented, ….

• A consequence of wrong API usage is a potential 
binary incompatible change error.
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Validating Binary Compatibility

• Evolving APIs such that they are backwards 
compatible with existing binaries
 http://wiki.eclipse.org/index.php/Evolving_Java-based_APIs
 It is easy to get it wrong
 Now the tooling takes care of this

• The user simply specifies an API baseline
 Generally this means pointing to the previous release (N – 1)
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Bundle version number management
• http://wiki.eclipse.org/index.php/Version_Numbering
• The tooling takes care of letting the user know when 

the minor or major version of a bundle should be 
changed according to rules described in the 
document:
 A new API that is not a breaking change requires the minor 

version to be incremented
 A new API that is a breaking change requires the major 

version to be incremented
• No support for the micro version for the initial release.

 Technically speaking, this version should be changed as 
soon as any modification is made in the source code: 
comment change, method body change,…
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API Tooling in Action (simulation of bug 191231/191232)
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API Tooling Parts
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API Profile and API Components

• These are the two major pieces used by the API 
tooling tools to make diagnosis on the code

• An API profile can be seen like a PDE target platform.
• An API profile is a collection of API components.
• It is initialized using an Eclipse SDK installation 

plugins directory.
• Inside the IDE, a profile corresponding to the 

workbench contents is automatically created.

Wednesday, October 14, 2009



19  API Tooling in Eclipse  |  Chris Aniszczyk  |  © 2008 EclipseSource19

API Description

• This contains the specific restrictions for all the API 
types of an API component

• It is kept up-to-date inside the workbench by using 
resource listeners

• It is exported inside the binary bundles or generated at 
build time using an ant task.
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Filtering of API Problems

• Each component can define a problem filter
• The filtering can be used to remove from reports 

known breakages.
• For example, an API breakage has been approved by 

the PMC and you don’t want to get it reported for each 
build.

• The problem filter is also part of the binary plug-in
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Two aspects: IDE and build process

• Each feature is available from within the IDE or inside 
the build process.

• The IDE support is required to help the Eclipse 
developer while the code is written

• The build process support is required to provide 
feedback during the Eclipse build. This also allows 
other projects to use it inside their builds.
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Build support

• Addition of new ant tasks:
 Generation of .api_description file
 Comparison of SDK drops: binary compatibility, api usage 

reports
• Integration inside the Eclipse builds (headless mode)
• Integration inside ant build (no Eclipse running)

Wednesday, October 14, 2009



23  API Tooling in Eclipse  |  Chris Aniszczyk  |  © 2008 EclipseSource23

API Error/Warning Preferences
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API Setup Wizard
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API Profile Preferences
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API Profile Wizard
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Future work
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To be done...
• Handling of package versioning
• Support extended to support more than just bundles

 Pure Java™ projects
 Plug-in extension points

• Detect illegal use of system libraries with regards to the execution 
environment set for a project 
 i.e. referencing J2SE™-1.5 code when set to J2SE-1.4

• Improve integration with rel-eng build reporting
• Determine compatible version range of required bundles
• And what you might suggest...

Wednesday, October 14, 2009



29  API Tooling in Eclipse  |  Chris Aniszczyk  |  © 2008 EclipseSource29

Summary
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API Tooling today

• Help you to define your API restrictions
• Keep a consistent and standard presentation of API 

restrictions
• Detect binary breakage between a baseline and the 

current version
• Detect wrong API usage
• Detect wrong @since tags and inconsistent bundle 

versioning
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Links

• Wiki
 http://wiki.eclipse.org/Api_Tooling

• Bugzilla
 https://bugs.eclipse.org/bugs/enter_bug.cgi?product=PDE
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Q & A
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