
1 API Tooling in Eclipse | Chris Aniszczyk | © 2008 EclipseSource1

API Tooling in the Eclipse

Wednesday, October 14, 2009

2 API Tooling in Eclipse | Chris Aniszczyk | © 2008 EclipseSource2

Overview

• The need for tooling
• Tooling features
• Tooling in action
• Future work
• Summary
• Q&A

Wednesday, October 14, 2009

3 API Tooling in Eclipse | Chris Aniszczyk | © 2008 EclipseSource3

The need for tooling

Wednesday, October 14, 2009

4 API Tooling in Eclipse | Chris Aniszczyk | © 2008 EclipseSource4

Define API

• APIs are published contracts
 Producers specify the contracts

 Honor contracts release after release
 Evolve the contracts for enhancements and fix problems

 Consumers adhere to the contracts
 Implement the contracts per specification
 Use provided implementations per contract specifications

Wednesday, October 14, 2009

5 API Tooling in Eclipse | Chris Aniszczyk | © 2008 EclipseSource5

API Dimensions

API Use
(Consumer)

API Evolution
(Producer)

Behavior remains constant over time
as APIs evolve and grow.X X

Wednesday, October 14, 2009

6 API Tooling in Eclipse | Chris Aniszczyk | © 2008 EclipseSource6

What have we done as plug-in developers?
• We use Javadoc™ to document contracts

 This class is not intended to be instantiated or subclassed by
clients.

 Has no effect if not read
 Inconsistent wording, placement, and use

• Use component.xml to specify APIs
 Out of date, not maintained
 Why? Because there’s no tooling and it’s separate from the code

• We use package names to categorize as public/internal, but all
packages are exported

• We use OSGi package exports to limit visibility, but does not
prevent access to internal types

• We use Eclipse’s “access rules” to discourage use, but this can
be turned off

Wednesday, October 14, 2009

7 API Tooling in Eclipse | Chris Aniszczyk | © 2008 EclipseSource7

More things we do…

• Manually examine API changes or use some external
tool before a release
 Changes between releases can be significant
 Validation is time consuming and error prone
 Lost development time (due to checking and bugs found)

Wednesday, October 14, 2009

8 API Tooling in Eclipse | Chris Aniszczyk | © 2008 EclipseSource8

Disclaimer

• API design is still your problem
 Designing quality APIs
 Ensuring consistent behavior

• But there are things that tooling can with…

Wednesday, October 14, 2009

9 API Tooling in Eclipse | Chris Aniszczyk | © 2008 EclipseSource9

API Tooling Features

Wednesday, October 14, 2009

10 API Tooling in Eclipse | Chris Aniszczyk | © 2008 EclipseSource10

API Tooling to the Rescue!

• Reports
 Illegal API use
 Binary incompatibility relative to a baseline
 Incorrect bundle version numbers
 Missing or malformed @since tags
 Leakage of non-APIs types inside APIs

• Tightly integrated toolset in the Eclipse SDK
 Currently limited to Plug-in projects/OSGi bundles
 Runs as a builder (auto-build, incremental and full builds)
 Immediate feedback as you develop and use APIs

Wednesday, October 14, 2009

11 API Tooling in Eclipse | Chris Aniszczyk | © 2008 EclipseSource11

Specifying API Contracts
• Use Javadoc tags

 E.g. @noimplement, @noextend, @noreference, @noinstantiate

• Benefits
 Contracts live with the code for producers and consumers
 Content assist helps developers
 Available for projects that are not using 1.5 annotations
 Restrictions appear in published Javadoc APIs in a standard

way
 Tools can process tags

Wednesday, October 14, 2009

12 API Tooling in Eclipse | Chris Aniszczyk | © 2008 EclipseSource12

Example of Published API

Wednesday, October 14, 2009

13 API Tooling in Eclipse | Chris Aniszczyk | © 2008 EclipseSource13

API Usage

• Once the APIs are specified, the user needs to make
sure that he/she is using them appropriately.

• API usage is flagging any kind of illegal usage of API:
reference to an API that is not supposed to be
referenced, implementation of an interface that is not
supposed to be implemented, ….

• A consequence of wrong API usage is a potential
binary incompatible change error.

Wednesday, October 14, 2009

14 API Tooling in Eclipse | Chris Aniszczyk | © 2008 EclipseSource14

Validating Binary Compatibility

• Evolving APIs such that they are backwards
compatible with existing binaries
 http://wiki.eclipse.org/index.php/Evolving_Java-based_APIs
 It is easy to get it wrong
 Now the tooling takes care of this

• The user simply specifies an API baseline
 Generally this means pointing to the previous release (N – 1)

Wednesday, October 14, 2009

http://wiki.eclipse.org/index.php/Evolving_Java-based_APIs
http://wiki.eclipse.org/index.php/Evolving_Java-based_APIs

15 API Tooling in Eclipse | Chris Aniszczyk | © 2008 EclipseSource15

Bundle version number management
• http://wiki.eclipse.org/index.php/Version_Numbering
• The tooling takes care of letting the user know when

the minor or major version of a bundle should be
changed according to rules described in the
document:
 A new API that is not a breaking change requires the minor

version to be incremented
 A new API that is a breaking change requires the major

version to be incremented
• No support for the micro version for the initial release.

 Technically speaking, this version should be changed as
soon as any modification is made in the source code:
comment change, method body change,…

Wednesday, October 14, 2009

http://wiki.eclipse.org/index.php/Version_Numbering
http://wiki.eclipse.org/index.php/Version_Numbering

16 API Tooling in Eclipse | Chris Aniszczyk | © 2008 EclipseSource16

API Tooling in Action (simulation of bug 191231/191232)

Wednesday, October 14, 2009

17 API Tooling in Eclipse | Chris Aniszczyk | © 2008 EclipseSource17

API Tooling Parts

Wednesday, October 14, 2009

18 API Tooling in Eclipse | Chris Aniszczyk | © 2008 EclipseSource18

API Profile and API Components

• These are the two major pieces used by the API
tooling tools to make diagnosis on the code

• An API profile can be seen like a PDE target platform.
• An API profile is a collection of API components.
• It is initialized using an Eclipse SDK installation

plugins directory.
• Inside the IDE, a profile corresponding to the

workbench contents is automatically created.

Wednesday, October 14, 2009

19 API Tooling in Eclipse | Chris Aniszczyk | © 2008 EclipseSource19

API Description

• This contains the specific restrictions for all the API
types of an API component

• It is kept up-to-date inside the workbench by using
resource listeners

• It is exported inside the binary bundles or generated at
build time using an ant task.

Wednesday, October 14, 2009

20 API Tooling in Eclipse | Chris Aniszczyk | © 2008 EclipseSource20

Filtering of API Problems

• Each component can define a problem filter
• The filtering can be used to remove from reports

known breakages.
• For example, an API breakage has been approved by

the PMC and you don’t want to get it reported for each
build.

• The problem filter is also part of the binary plug-in

Wednesday, October 14, 2009

21 API Tooling in Eclipse | Chris Aniszczyk | © 2008 EclipseSource21

Two aspects: IDE and build process

• Each feature is available from within the IDE or inside
the build process.

• The IDE support is required to help the Eclipse
developer while the code is written

• The build process support is required to provide
feedback during the Eclipse build. This also allows
other projects to use it inside their builds.

Wednesday, October 14, 2009

22 API Tooling in Eclipse | Chris Aniszczyk | © 2008 EclipseSource22

Build support

• Addition of new ant tasks:
 Generation of .api_description file
 Comparison of SDK drops: binary compatibility, api usage

reports
• Integration inside the Eclipse builds (headless mode)
• Integration inside ant build (no Eclipse running)

Wednesday, October 14, 2009

23 API Tooling in Eclipse | Chris Aniszczyk | © 2008 EclipseSource23

API Error/Warning Preferences

Wednesday, October 14, 2009

24 API Tooling in Eclipse | Chris Aniszczyk | © 2008 EclipseSource24

API Setup Wizard

Wednesday, October 14, 2009

25 API Tooling in Eclipse | Chris Aniszczyk | © 2008 EclipseSource25

API Profile Preferences

Wednesday, October 14, 2009

26 API Tooling in Eclipse | Chris Aniszczyk | © 2008 EclipseSource26

API Profile Wizard

Wednesday, October 14, 2009

27 API Tooling in Eclipse | Chris Aniszczyk | © 2008 EclipseSource27

Future work

Wednesday, October 14, 2009

28 API Tooling in Eclipse | Chris Aniszczyk | © 2008 EclipseSource28

To be done...
• Handling of package versioning
• Support extended to support more than just bundles

 Pure Java™ projects
 Plug-in extension points

• Detect illegal use of system libraries with regards to the execution
environment set for a project
 i.e. referencing J2SE™-1.5 code when set to J2SE-1.4

• Improve integration with rel-eng build reporting
• Determine compatible version range of required bundles
• And what you might suggest...

Wednesday, October 14, 2009

29 API Tooling in Eclipse | Chris Aniszczyk | © 2008 EclipseSource29

Summary

Wednesday, October 14, 2009

30 API Tooling in Eclipse | Chris Aniszczyk | © 2008 EclipseSource30

API Tooling today

• Help you to define your API restrictions
• Keep a consistent and standard presentation of API

restrictions
• Detect binary breakage between a baseline and the

current version
• Detect wrong API usage
• Detect wrong @since tags and inconsistent bundle

versioning

Wednesday, October 14, 2009

31 API Tooling in Eclipse | Chris Aniszczyk | © 2008 EclipseSource31

Links

• Wiki
 http://wiki.eclipse.org/Api_Tooling

• Bugzilla
 https://bugs.eclipse.org/bugs/enter_bug.cgi?product=PDE

Wednesday, October 14, 2009

http://wiki.eclipse.org/Api_Tooling
http://wiki.eclipse.org/Api_Tooling
https://bugs.eclipse.org/bugs/enter_bug.cgi?product=PDE
https://bugs.eclipse.org/bugs/enter_bug.cgi?product=PDE

32 API Tooling in Eclipse | Chris Aniszczyk | © 2008 EclipseSource32

Q & A

Wednesday, October 14, 2009

