
10/13/09 9:32 AMAPI Tools in Eclipse: An introduction

Page 1 of 16https://www.ibm.com/developerworks/opensource/library/os-eclipse-api-tools/

API Tools in Eclipse: An introduction
Learn to manage your application's API using Eclipse

Chris Aniszczyk (zx@code9.com), Principal Consultant, Code 9

Summary: Crafting Application Public Interface (API) and especially managing API
among different releases is difficult. Learn how to take advantage of Eclipse's PDE
API Tools to make this process easier and seamlessly integrated into your daily
development. Note that this article is specific to Eclipse V3.4: Ganymede.

Date: 16 Sep 2008
Level: Intermediate
Activity: 1664 views
Comments: 0 (Add comments)

 Average rating

Before we get into detail about the Application Public Interface (API) Tools within the
Eclipse Plug-in Development Environment (PDE), let's talk a little bit about what it
means to be API in Eclipse.

What is API?

Ever get the following warnings or errors in Eclipse and wonder what they mean?

Figure 1. Discourage access

Internal packages
On top of naming conventions, what really makes a package API or not within a
plug-in is whether the package is exported in the MANIFEST.MF file. If it is, it's
considered API. To make something not API, you can tag an exported package with

https://www.ibm.com/developerworks/opensource/library/os-eclipse-api-tools/#author1
mailto:zx@code9.com?subject=API%20Tools%20in%20Eclipse:%20An%20introduction&cc=cappel@us.ibm.com
https://www.ibm.com/developerworks/opensource/library/os-eclipse-api-tools/#icomments
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

10/13/09 9:32 AMAPI Tools in Eclipse: An introduction

Page 2 of 16https://www.ibm.com/developerworks/opensource/library/os-eclipse-api-tools/

an x-internal:=true attribute. This instructs Eclipse that the package you exported is
available for use, but is considered internal.

The most probable reason for those warnings is that you're accessing code that isn't
meant to be publicly accessed using some form of API. API elements, in general, are
well documented and have a specification of some type. On the other hand, non-API
elements are considered internal implementation details and usually ship without
published documentation. The access to these internal elements is what Eclipse was
notifying you about in the figure above. Eclipse was trying to politely warn you that
you are accessing code that may change and isn't officially supported. So then, what
exactly is API?

Since Eclipse is based on the Java™ programming language, we have four types of
API elements. Let's look at each.

API package
A package that contains at least one API class or API interface.

Table 1. Package naming conventions in the Eclipse platform
Naming Convention Example Packages
org.eclipse.xyz.* org.eclipse.ui, org.eclipse.swt.widgets

org.eclipse.xyz.internal.* org.eclipse.compare.internal,
org.eclipse.ui.internal

org.eclipse.xyz.internal.provisional.*org.eclipse.equinox.internal.provisional.p2.engine

API class or interface
A public class or interface in an API package, or a public or protected class or
interface member declared in or inherited by some other API class or interface.

API method
A public or protected method or constructor either declared in or inherited by an
API class or interface.

API field
A public or protected field either declared in or inherited by an API class or
interface.

Now that we are aware of the different kinds of API elements, let's discuss API Tools
and how it can manage these API elements for you.

What is API Tools?

The goal of API Tools is to help you maintain good APIs. API Tools accomplishes this
by reporting API defects, such as binary incompatibilities, incorrect plug-in version
numbers, missing or incorrect @since tags and usage of non-API code between plug-
ins. Specifically, it's designed to:

10/13/09 9:32 AMAPI Tools in Eclipse: An introduction

Page 3 of 16https://www.ibm.com/developerworks/opensource/library/os-eclipse-api-tools/

Identify binary compatibility issues between two versions of a software
component or product.
Update version numbers for plug-ins based on the Eclipse versioning scheme.
Update @since tags for newly added classes, interfaces, and methods.
Provide new javadoc tags and code assist to annotate types with special
restrictions.
Leverage existing information (in MANIFEST.MF) to define the visibility of
packages between bundles.
Identify usage of non-API code between plug-ins.
Identity leakage of non-API types into API.

Adding API Tools

To use API Tools within your projects, you need to do two things: set an API
baseline and add the API Tools nature to the projects of interest.

Setting an API baseline

To know whether you are breaking API, you need to set some type of baseline for
compatibility analysis. In API Tools, this is called an API Baseline and may be set via
the API Baselines preference page (see Figure 2). Setting an API Baseline is as
simple as pointing to an existing Eclipse-based installation. API Tools will generate a
baseline for you on the fly when it scans for plug-ins. Once you have a baseline set,
you need to have your Eclipse projects take advantage of API Tools. Note, this
process can also be done in a headless manner as part of your build system, but this
is outside the scope of this article, and I recommend checking out the API Tools wiki
for more information (see Resources).

Figure 2. Adding an API baseline

https://www.ibm.com/developerworks/opensource/library/os-eclipse-api-tools/#resources

10/13/09 9:32 AMAPI Tools in Eclipse: An introduction

Page 4 of 16https://www.ibm.com/developerworks/opensource/library/os-eclipse-api-tools/

Adding the API Tools project nature

To see any errors or warnings associated with API Tools, your projects need to have
the API Analysis nature and builder added to them. This can be accomplished in two
ways and depends whether you're applying API Tools to existing projects. If you're
working with existing projects, the recommended approach is to use the API Tooling
Setup wizard (see Figure 3). The wizard can be accessed by right-clicking your
project and selecting PDE Tools > API Tooling Setup. In the wizard, simply click
the projects you want converted to use API Tools and click Finish. That's it.

Figure 3. API Tooling setup wizard

10/13/09 9:32 AMAPI Tools in Eclipse: An introduction

Page 5 of 16https://www.ibm.com/developerworks/opensource/library/os-eclipse-api-tools/

The other approach to take advantage of API Tools is at the time of plug-in project
creation. In Eclipse V3.4, the New Plug-in Project wizard was enhanced with an
additional checkbox, Enable API Analysis, to add the API Analysis nature to your
project.

Figure 4. API Tools in the New Plug-in Project Wizard

10/13/09 9:32 AMAPI Tools in Eclipse: An introduction

Page 6 of 16https://www.ibm.com/developerworks/opensource/library/os-eclipse-api-tools/

Using API Tools

Now that we know how to set up projects to use API Tools, let's look at some
examples on how API Tools can help us. API Tools has a set of annotations you can
use on your various API elements to enforce restrictions.

Table 2. API restrictions

Annotation Valid API
elements Description

@noimplementInterfaces
Indicates that clients must not implement this interface.
Any class using the implements or extends keyword for
the associated interface will be flagged with problem.

10/13/09 9:32 AMAPI Tools in Eclipse: An introduction

Page 7 of 16https://www.ibm.com/developerworks/opensource/library/os-eclipse-api-tools/

@noextend Classes
Indicates that clients must not extend this class. Any
class using the extends keyword for the associated class
will be flagged with a problem.

@noinstantiateClasses
Indicates that clients must not instantiate this class. Any
code that instantiates the associated class with any
constructor will be flagged with a problem.

@nooverride Methods
Indicates that clients must not redeclare this method.
Any subclass that defines a method that overrides the
associated method will be flagged with a problem.

@noreference

Methods,
constructors
and fields
(nonfinal)

Indicates that clients must not reference this method,
constructor, or nonfinal field. Any code that directly
invokes the associated method or constructor or
references the associated nonfinal field will be flagged
with a problem.

Now that you have an idea of the available API restriction annotations, let's look at
some examples of how this would work in the real world.

API restriction examples

Let's start with a really simple example, like a plug-in with an API that allows you to
produce widgets.

Listing 1. IWidget.java

package org.eclipse.example.widgetfactory;

/**
 * A simple widget
 *
 * @noimplement
 */
public interface IWidget {

 public String getName();

 public long getId();

}

In this example, a widget simply has a name and an identifier. We annotated the
interface with a restriction to tell clients not to implement this interface as we want
our clients to implement the abstract widget listed below.

Listing 2. AbstractWidget.java

10/13/09 9:32 AMAPI Tools in Eclipse: An introduction

Page 8 of 16https://www.ibm.com/developerworks/opensource/library/os-eclipse-api-tools/

package org.eclipse.example.widgetfactory;

/**
 * An abstract widget
 */
public abstract class AbstractWidget implements IWidget {

 /**
 * @nooverride
 */
 public long getId() {
 return Math.round(Math.random());
 }

}

The abstract widget we have has a method that is annotated with an API restriction
telling clients not to override this method. Let's create a default widget people can
use.

Listing 3. DefaultWidget.java

package org.eclipse.example.widgetfactory;

/**
 * A default widget, this class isn't meant to be extended.
 *
 * Implementation is provided as-is.
 *
 * @noextend
 */
public class DefaultWidget extends AbstractWidget {

 public String getName() {
 return "The default widget";
 }

}

The default widget we have provided for our clients is simply as-is. It's meant to be
used, but not extended. We are free to extend this class within our own plug-in and
create other default widgets people could use. So, let's pretend we are a client of
this widget API and see what happens. Let's create two classes: MyWidget
(implements IWidget) and MyDefaultWidget (extends DefaultWidget). As a client of the
widget API, what would I see? For the MyWidget class, we will see a warning that we
are implementing an API interface that isn't meant to be implemented by clients (see
Figure 5). For the MyDefaultWidget class, we will see warnings about illegally extending

10/13/09 9:32 AMAPI Tools in Eclipse: An introduction

Page 9 of 16https://www.ibm.com/developerworks/opensource/library/os-eclipse-api-tools/

the DefaultWidget class and also illegally overriding the getId() method.

Figure 5. MyWidget.java

Figure 6. MyDefaultWidget.java

This simple example should give you a clear idea of how clients of your API will be
presented with usage information about your API.

10/13/09 9:32 AMAPI Tools in Eclipse: An introduction

Page 10 of 16https://www.ibm.com/developerworks/opensource/library/os-eclipse-api-tools/

Binary incompatibilities

A difficult problem when declaring API is to know when you actually break API from
version to version of your software. For example, an easy way to break API is to
change the method signature of a previously defined API method. To illustrate, I'll do
that in the Eclipse code base with the popular PluginRegistry class.

Figure 7. A binary-incompatible change

In this case, I modified an existing API method, findEntry(String id), and API Tools is
smart enough to realize that this would break clients of this API class. There are
many other ways to break API, and API Tools provides checks for all of these. As a
bonus, all these binary-incompatible changes are configurable using the API Tools
preferences page.

Figure 8. API Tools preferences

10/13/09 9:32 AMAPI Tools in Eclipse: An introduction

Page 11 of 16https://www.ibm.com/developerworks/opensource/library/os-eclipse-api-tools/

Versioning

Another difficult problem that surfaces when dealing with API is version management.
There are two sides to version management in my opinion: One is coming up with a
versioning strategy and the other is enforcing it. API Tools follows the Eclipse
Versioning Guidelines (see Resources), which are heavily based on the OSGi
versioning scheme. To keep things simple, version numbers are composed of four
segments — three integers and a string, respectively named
major.minor.service.qualifier.

Headless API Tools and reporting
While it's outside the scope of this article to discuss using API Tools in a headless
environment, it's possible to do so. This is exactly what the Eclipse build does, it
generates API Baselines and API Reports. API Tools includes a few Ant tasks to help
you do this. Please see the org.eclipse.pde.api.tools plug-in for more information
about the Ant tasks.

Each version segment captures a different intent. The major segment indicates

https://www.ibm.com/developerworks/opensource/library/os-eclipse-api-tools/#resources

10/13/09 9:32 AMAPI Tools in Eclipse: An introduction

Page 12 of 16https://www.ibm.com/developerworks/opensource/library/os-eclipse-api-tools/

breakage in the API, the minor segment indicates externally visible changes like new
API, the service segment indicates bug fixes and the change of development stream,
and the qualifier segment indicates a particular build.

The difficult and error-prone part has always been remembering when to change the
version number of your plug-in due to whatever changes you made (like adding a
new API method or fixing a bug). A common problem in the past was that developers
used to simply bump the minor version when anything changed instead of doing it
when new API changed — for example, when the 3.4 stream opened for the Eclipse
SDK, it was common to just bump the minor version, assuming changes would be
made in the future to actually cause a need to modify the minor version. However,
with API Tools, version management isn't error-prone anymore because API Tools is
able to enforce and tell you what the proper version should be of your plug-in based
on an API Baseline. For example, imagine I added a method to an API class of a
plug-in that had a version of 3.3.0, what would API Tools show you?

Figure 9. Version errors

API Tools presents us with two errors, indicating that we should update the @since tag
for the method to clearly state that the method is part of the 3.4 API. The other
error indicates that the plug-in version be bumped in the MANIFEST.MF file. If we
look at this specific error in detail, we see that API Tools even kindly offers a proper
quick fix to update the version number to the correct version.

Figure 10. MANIFEST.MF Quickfix

10/13/09 9:32 AMAPI Tools in Eclipse: An introduction

Page 13 of 16https://www.ibm.com/developerworks/opensource/library/os-eclipse-api-tools/

Conclusion

This article provided a brief introduction to API Tools and showcased some of its
features. It's important to note that this article scratches the surface of what API
Tools can do for your projects. For example, you can use API Tools in a headless
environment and also have API Tools generate reports for you that catch API
violations. I hope you grasp the importance of API and versioning and start using API
Tools in your projects.

Resources

Learn

10/13/09 9:32 AMAPI Tools in Eclipse: An introduction

Page 14 of 16https://www.ibm.com/developerworks/opensource/library/os-eclipse-api-tools/

Learn more about the The Eclipse Plug-in Development Environment (PDE).

Learn more about the PDE API Tools at the Eclipse Foundation.

Read "Eclipse platform API rules of engagement" for additional history and
background on Eclipse API.

See "Eclipse Platform API Specification" for a list of Eclipse APIs.

Learn more about how Eclipse versions its plug-ins at the Eclipse version-
numbering page.

Interested about OSGi? Check out the OSGi Alliance Web site.

Interested in what's happening inside the Eclipse community? Check out
PlanetEclipse.

Check out the available Eclipse plug-ins at Eclipse Plug-in Central.

Check out EclipseLive for webinars featuring various Eclipse technologies.

Want to meet Eclipse committers and learn more about Eclipse projects? Attend
EclipseCon, Eclipse's premiere conference.

Check out the "Recommended Eclipse reading list."

Browse all the Eclipse content on developerWorks.

New to Eclipse? Read the developerWorks article "Get started with Eclipse
Platform" to learn its origin and architecture, and how to extend Eclipse with
plug-ins.

Expand your Eclipse skills by checking out IBM developerWorks' Eclipse project
resources.

To listen to interesting interviews and discussions for software developers, check
out developerWorks podcasts.

Stay current with developerWorks' Technical events and webcasts.

Watch and learn about IBM and open source technologies and product functions
with the no-cost developerWorks On demand demos.

Check out upcoming conferences, trade shows, webcasts, and other Events
around the world that are of interest to IBM open source developers.

http://www.eclipse.org/pde/
http://www.eclipse.org/pde/pde-api-tools/
http://help.eclipse.org/stable/nftopic/org.eclipse.platform.doc.isv/reference/misc/api-usage-rules.html
http://help.eclipse.org/stable/nftopic/org.eclipse.platform.doc.isv/reference/api/overview-summary.html
http://wiki.eclipse.org/Version_Numbering
http://www.osgi.org/
http://planet.eclipse.org/
http://www.eclipseplugincentral.com/
http://live.eclipse.org/
http://www.eclipsecon.org/
http://www.ibm.com/developerworks/library/os-ecl-read
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=eclipse
http://www.ibm.com/developerworks/opensource/library/os-eclipse-platform/
http://www.ibm.com/developerworks/opensource/top-projects/eclipse.html
http://www.ibm.com/developerworks/podcast/
http://www.ibm.com/developerworks/offers/techbriefings/
http://www.ibm.com/developerworks/offers/lp/demos/
http://www.ibm.com/developerworks/views/opensource/events.jsp

10/13/09 9:32 AMAPI Tools in Eclipse: An introduction

Page 15 of 16https://www.ibm.com/developerworks/opensource/library/os-eclipse-api-tools/

Visit the developerWorks Open source zone for extensive how-to information,
tools, and project updates to help you develop with open source technologies
and use them with IBM's products.

Get products and technologies

Check out the Eclipse Ganymede release train page at Eclipse.org.

Check out the latest Eclipse technology downloads at IBM alphaWorks.

Download Eclipse Platform and other projects from the Eclipse Foundation.

Download IBM product evaluation versions, and get your hands on application
development tools and middleware products from DB2®, Lotus®, Rational®,
Tivoli®, and WebSphere®.

Innovate your next open source development project with IBM trial software,
available for download or on DVD.

Discuss

Chat with other Eclipse developers and committers on IRC.

The Eclipse Platform newsgroups should be your first stop to discuss questions
regarding Eclipse. (Selecting this will launch your default Usenet news reader
application and open eclipse.platform.)

The Eclipse newsgroups has many resources for people interested in using and
extending Eclipse.

Participate in developerWorks blogs and get involved in the developerWorks
community.

About the author

Chris Aniszczyk is the technical lead for the Eclipse Plug-in Development Environment
(PDE) project and principal consultant at Code 9. He tends to be all over the place
inside the Eclipse community by committing on various Eclipse projects. He sits on
the Eclipse Architecture Council, the Eclipse Foundation Board of Directors and on the

http://www.ibm.com/developerworks/opensource
http://www.eclipse.org/ganymede/
http://www.eclipse.org/
http://www.alphaworks.ibm.com/eclipse
http://www.alphaworks.ibm.com/
http://www.eclipse.org/downloads/
http://www.ibm.com/developerworks/downloads/
http://www.ibm.com/developerworks/downloads/
http://wiki.eclipse.org/index.php/IRC
news://news.eclipse.org/eclipse.platform
http://www.eclipse.org/newsgroups/
http://www.ibm.com/developerworks/blogs

10/13/09 9:32 AMAPI Tools in Eclipse: An introduction

Page 16 of 16https://www.ibm.com/developerworks/opensource/library/os-eclipse-api-tools/

Eclipse Technology PMC. His passions are blogging, software advocacy, tooling, and
anything Eclipse. He's always available to discuss open source or Eclipse over a
frosty beverage.

Trademarks | My developerWorks terms and conditions

http://www.ibm.com/developerworks/ibm/trademarks/
https://www.ibm.com/developerworks/mydeveloperworks/terms/

