
10/13/09 12:08 PMCreate an Eclipse-based application using the Graphical Editing Framework

Page 1 of 19http://www.ibm.com/developerworks/opensource/library/os-eclipse-gef11/

Create an Eclipse-based application
using the Graphical Editing Framework
How to get started with the GEF and other options for the graphically inclined Eclipse
developer

Chris Aniszczyk, Software Engineer, IBM　
Randy Hudson, Software developer, IBM　

Summary: Learn the initial steps involved in creating an Eclipse-based application
using the Graphical Editing Framework (GEF). Also, discover the options you have
these days to bootstrap the process of creating graphical editors in Eclipse.

Date: 27 Mar 2007
Level: Intermediate
Activity: 2646 views
Comments: 0 (Add comments)

 Average rating

Editor's note: The following article, originally written by Randy Hudson in July 2003,
was updated in March 2007 by Chris Aniszczyk.

This article walks through the steps for using the Graphical Editing Framework (GEF).
Rather than finishing each step in its entirety, we'll use a subset of your application's
model and get that working first. For example, we might initially ignore connections
or focus on just a subset of the types of graphical elements in your application. Next,
learn what other technologies are available to add graphical editing to your
applications. In the past, stand-alone GEF used to be the only option for graphical
editing in Eclipse, but this has changed as Eclipse has evolved.

Overview of GEF

GEF assumes you have a model you would like to display and edit graphically. To do
this, GEF provides viewers (of the type EditPartViewer) that can be used anywhere in
the Eclipse workbench. Like JFace viewers, GEF viewers are adapters on an SWT
Control. But the similarity stops there. GEF viewers are based on a Model-View-
Controller (MVC) architecture.

The controllers bridge the view and model (see Figure 1). Each controller, or EditPart

http://www.ibm.com/developerworks/opensource/library/os-eclipse-gef11/#author1
http://www.ibm.com/developerworks/opensource/library/os-eclipse-gef11/#author2
http://www.ibm.com/developerworks/opensource/library/os-eclipse-gef11/#icomments
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

10/13/09 12:08 PMCreate an Eclipse-based application using the Graphical Editing Framework

Page 2 of 19http://www.ibm.com/developerworks/opensource/library/os-eclipse-gef11/

as they are called here, is responsible for mapping the model to its view and for
making changes to the model. The EditPart also observes the model and updates the
view to reflect changes in the model's state. EditParts are the objects with which the
user interacts. EditParts are covered in detail later.

Figure 1. Model-View-Controller

GEF provides two viewer types: graphical and tree-based. Each hosts a different type
of view. The graphical viewer uses figures that paint on an SWT Canvas. Figures are
defined in the Draw2D plug-in, which is included as part of GEF. The TreeViewer uses
an SWT Tree and TreeItems for its view.

Step 1: Bring your own model

GEF knows nothing about a model. Any model type should work, as long as it meets
the properties described below.

What's in a model?

Everything is in the model. The model is the only thing persisted and restored. Your
application should store all important data in the model. During the course of editing,
undo, and redo, the model is the only thing that endures. Figures and EditParts will
be garbage collected and recreated over time.

When the user interacts with EditParts, the model is not manipulated directly by the
EditParts. Instead, a Command is created that encapsulates the change. Commands can be
used to validate the user's interaction, and to provide undo and redo support.

Strictly speaking, Commands are also conceptually part of the model. They are not the
model per se, but the means by which the model is edited. Commands are used to
perform all of the user's undoable changes. Ideally, commands should only know
about the model. They should avoid referencing an EditPart or figure. Similarly, a
command should avoid invoking the user interface (such as a pop-up dialog)
whenever possible.

10/13/09 12:08 PMCreate an Eclipse-based application using the Graphical Editing Framework

Page 3 of 19http://www.ibm.com/developerworks/opensource/library/os-eclipse-gef11/

A tale of two models

A straightforward GEF application is an editor for drawing diagrams. (Here, diagram
means just a picture, not class diagram.) A diagram can be modeled as some
shapes. A shape might have properties for location, color, etc., and may be a group
structure of multiple shapes. There are no surprises here, and the previous
requirement is easily maintained.

Figure 2. A simple model

Another common GEF application is a UML editor, such as a class diagram editor.
One important piece of information in the diagram is the (x, y) location where a class
appears. You might assume that the model must describe a class as having an x and
y property. Most developers want to avoid polluting their models with attributes that
don't make sense. In such applications, the term business model can be used to
refer to the base model in which the important semantic details are stored. While
diagram-specific information is stored in the view model (which means a view of
something in the business model; an object may be viewed multiple times in one
diagram). Sometimes the split is even reflected in the workspace, where different
resources might be used to persist the diagram and business model separately. There
may even be several diagrams for the same business model (see Figure 3). A
common term for view models is notational models.

Figure 3. A model split into business and view models

10/13/09 12:08 PMCreate an Eclipse-based application using the Graphical Editing Framework

Page 4 of 19http://www.ibm.com/developerworks/opensource/library/os-eclipse-gef11/

Whether your model is split into two parts, or even multiple resources, it does not
matter to GEF. The term model is used to refer to the whole application model. An
object on screen may correspond to multiple objects in the model. GEF is designed to
allow you to handle such mappings easily.

Notification strategies

Updates to the view should almost always be the result of notification from the
model. Your model must provide some notification mechanism, and this mechanism
must be mapped to the appropriate updates in your application. Exceptions might be
read-only models or models that cannot notify, such as a file system or a remote
connection.

Notification strategies are usually distributed (per object) or centralized (per domain).
A domain notifier knows about every change to any object in the model and
broadcasts these changes to domain listeners. If your application employs this
notification model, you will probably add a domain listener per viewer. When that
listener receives a change, it will look up the affected EditParts, then redispatch the
change appropriately. If your application uses distributed notification, each EditPart
will typically add its own listeners to whichever model objects affect it.

Step 2: Define the view

The next step is decide how you will display your model using figures from the
Draw2D plug-in. Some figures can be used directly to display one of your model's
objects. For example, the Label figure can be used to display an Image and String.
Sometimes the desired results can be achieved by composing multiple figures, layout
managers, or borders. Finally, you may end up writing your own figure
implementations that paint in a way specific to your application. More information

10/13/09 12:08 PMCreate an Eclipse-based application using the Graphical Editing Framework

Page 5 of 19http://www.ibm.com/developerworks/opensource/library/os-eclipse-gef11/

about composing or implementing figures and layouts can be found in the Draw2D
developers guide included with the GEF SDK.

When using Draw2D with GEF, you can make your project easier to manage and
more flexible to changing requirements by following these guidelines:

Don't reinvent the wheel
You can combine the provided layout managers to render most things. Consider
composing multiple figures using combinations of the toolbar layout (in vertical
or horizontal orientation) and the border layout. Only as a last resort should you
write your own layout manager. As a reference point, look at the palette
provided in GEF. The palette is rendered using many of the standard figures and
layouts from Draw2D.

Keep a clean separation between EditPart and figure
If your EditPart uses a composite structure of several figures, layouts, and
borders, keep as much of that detail hidden from the EditPart. It is possible --
although not a good idea -- to have the EditPart build everything itself. But
doing this does not lead to a clean separation between controller and view. The
EditPart has intimate knowledge of the figure structure, so reusing that
structure with a similar EditPart is not possible. Also, changing the appearance
or structure may lead to unexpected bugs. Instead, you should write your own
subclass of Figure that hides the details of its structure. Then define the minimal
API on that subclass that the EditPart (the controller) uses to update the view.
This practice, referred to as the separation of concerns, results in greater reuse
and fewer bugs.

Don't reference the model or EditPart from the figure
The figure should not have access to the EditPart or model. In some situations,
the EditPart may add itself as a listener to the figure, but it will only be known
about as a listener, not as the EditPart. This practice of de-coupling also yields
greater reuse.

Use a contents pane
Sometimes you have a container that will contain other graphical elements, but
you need decorations around the outside the container. For example, a UML
class is typically shown as a box, where the top portion is labeled with the class
name and perhaps some stereotypes, and the bottom portion is reserved for
attributes and methods. This can be done by composing multiple figures. The
first figure is the title box for the class, while another figure is designated as the
contents pane. This figure will eventually contain the figures for attributes and
methods. When writing the EditPart implementation later, it is trivial to indicate
that the contents pane should be used as the parent for all children elements.

Step 3: Write your EditParts

10/13/09 12:08 PMCreate an Eclipse-based application using the Graphical Editing Framework

Page 6 of 19http://www.ibm.com/developerworks/opensource/library/os-eclipse-gef11/

Next, we'll bridge the model and view with the controller, or EditPart. This is the step
that puts the "framework" in GEF. The provided classes are abstract, so clients must
actually write code. It turns out that subclassing is not only familiar but is probably
the most flexible and straightforward way to map from model to view.

There are three base implementations provided for subclassing. Use
AbstractTreeEditPart for EditParts that appear in the tree viewer. Extend
AbstractGraphicalEditPart and AbstractConnectionEditPart in graphical viewers. We will
focus on graphical EditParts here. The same principles apply to use in the tree
viewer.

EditPart life cycle

Before you write your EditParts, it helps to know where they come from and where
they go when they are no longer needed. Each viewer is configured with a factory for
creating EditParts. When you set the viewer's contents, you do so by providing the
model object that represents the input for that viewer. The input is typically the top-
most model object, from which all other objects can be traversed. The viewer then
uses its factory to construct the contents EditPart for that input object. From then
on, each EditPart in the viewer will populate and manage its own children -- and
connection -- EditParts, delegating to the EditPart factory when new EditParts are
needed, until the viewer is populated. As new model objects are added by the user,
the EditParts in which those objects appear will respond by constructing the
corresponding EditParts. Note that the view construction parallels the EditParts
construction. So, after each EditPart is constructed and added to its parent EditPart,
the same happens with the view, whether figures or tree items.

EditParts are thrown out as soon as the user removes the corresponding model
object. If the user undoes a delete, it is a different EditPart that is recreated to
represent the restored object. This is why EditParts cannot contain long-term
information and should not be referenced by commands.

Your first EditPart: Contents

The first EditPart you write is the EditPart that corresponds to the diagram itself. This
EditPart is referred to as the contents of the viewer. It corresponds to the top-most
element in the model and is parented by the viewer's root EditPart (see Figure 4).
The root lays the foundation for the contents by providing various graphical layers,
such as connection layers, handle layers, etc., and possibly zoom or other
functionality at the viewer level. Note that the root's functions are not dependent on
any model object and that GEF provides several ready-to-use implementations for
roots.

Figure 4. EditParts in a viewer

10/13/09 12:08 PMCreate an Eclipse-based application using the Graphical Editing Framework

Page 7 of 19http://www.ibm.com/developerworks/opensource/library/os-eclipse-gef11/

The content's figure is not too interesting and is often just an empty panel that will
contain the diagram's children. Its figure should be opaque and should be initialized
with the layout manager that will layout the diagrams' children. It will, however,
have structure. The diagram's immediate children are determined by the list of child
model objects returned. Listing 1 shows a sample contents EditPart that creates an
opaque figure that will position its children using the XYLayout.

Listing 1. Initial implementation for the contents EditPart

public class DiagramContentsEditPart extends AbstractGraphicalEditPart {
 protected IFigure createFigure() {
 Figure f = new Figure();
 f.setOpaque(true);
 f.setLayoutManager(new XYLayout());
 return f;
 }

 protected void createEditPolicies() {
 ...
 }

 protected List getModelChildren() {
 return ((MyModelType)getModel()).getDiagramChildren();
 }
}

To determine the items on the diagram, getModelChildren() is implemented. This
method returns the list of child model objects, such as the nodes in the diagram. The
superclass will use this list of model objects to create the corresponding EditParts.
The newly created EditParts are added to the part's list of children EditParts. This, in
turn, adds each child's figure to the diagram's figure. By default, an empty list would

10/13/09 12:08 PMCreate an Eclipse-based application using the Graphical Editing Framework

Page 8 of 19http://www.ibm.com/developerworks/opensource/library/os-eclipse-gef11/

have been returned, which indicates no children.

More graphical EditParts

Your remaining EditParts (representing the items in the diagram) will probably have
data to be displayed graphically. They may also have their own structure, such as
connections or their own children. Many GEF applications depict labeled icons with
connections between them. Let's assume your EditPart is going to use a Label as its
figure and that the model provides a name, icon, and connections going to and from
the label. Listing 2 shows a first pass at implementing this type of EditPart.

Listing 2. Initial implementation for a node EditPart

public class MyNodeEditPart extends AbstractGraphicalEditPart {
 protected IFigure createFigure() {
 return new Label();
 }
 protected void createEditPolicies() {
 ...
 }
 protected List getModelSourceConnections() {
 MyModel node = (MyModel)getModel();
 return node.getOutgoingConnections();
 }
 protected List getModelTargetConnections() {
 MyModel node = (MyModel)getModel();
 return node.getIncomingConnections();
 }
 protected void refreshVisuals() {
 MyModel node = (MyModel)getModel();
 Label label = (Label)getFigure();
 label.setText(node.getName());
 label.setIcon(node.getIcon());

 Rectangle r = new Rectangle(node.x, node.y, -1, -1);
 ((GraphicalEditPart) getParent()).setLayoutConstraint(this, label, r);
 }
}

A new method, refreshVisuals (), is overridden. This method is called when it is time
to update the figure using data from the model. In this case, the model's name and
icon are reflected in the label. But more importantly, the label is positioned by
passing its layout constraint to the parent. In the contents EditPart, we used an XY
layout manager. This layout uses a Rectangle constraint to determine where to place
the children figures. A width and height of "-1" indicate that the figure should be
given its preferred size.

10/13/09 12:08 PMCreate an Eclipse-based application using the Graphical Editing Framework

Page 9 of 19http://www.ibm.com/developerworks/opensource/library/os-eclipse-gef11/

Tip No. 1
Figures should never placed using the setBounds(...) method. The use of layout
managers like XYLayout ensures that scrollbars will be updated correctly. Also, XYLayout
handles converting relative constraints to absolute locations, and it can be used to
size a figure to its preferred size automatically (in other words, when the constraint's
width and height are -1).

The method refreshVisuals() is called only once during the initialization of the
EditPart and is never called again. When responding to model notification, it is the
responsibility of the application to call refreshVisuals() again as needed to update the
figure. To improve performance, you may wish to factor out the code for each model
attribute into its own method (or a single method with a "switch"). That way, when
the model notifies, you run the least amount of code to refresh only what has
changed.

The other interesting difference is the code for connection support. Similar to
getModelChildren(), getModelSourceConnections(), and getModelTargetConnections() should
return the model objects representing the links between nodes. The superclass
creates the corresponding EditParts when necessary and adds them to the list of
source and target connection EditParts. Note that a connection is referred to by the
nodes at each end, but that its EditPart need only be created once. GEF ensures that
a connection is only created once by first checking to see if it exists already in the
viewer.

Making connections

Writing a connection EditPart implementation is not much different. Start by
subclassing AbstractConnectionEditPart. As before, refreshVisuals() may be
implemented to map attributes from the model to the figure. A connection may also
have a constraint, although constraints are slightly different than before. Here,
constraints are used by connection routers to bend the connection. Furthermore, a
connection EditPart's figure must be a Draw2D Connection, which introduces one
more requirement: connection anchors.

A connection must be anchored at both ends by a ConnectionAnchor. Therefore, you
must indicate, either in the connection EditPart or in the node implementations,
which anchors to use. By default, GEF assumes that the node EditParts will provide
the anchors by implementing the NodeEditPart interface. One reason for this is that
the choice of anchor is dependent on the figure being used by the nodes at each end.
The connection EditPart shouldn't know anything about the figures being used by the
nodes. Another reason is that when the user is creating a connection, the connection
EditPart doesn't exist, so the node must be able to show feedback on its own.
Continuing Listing 2, we add the necessary anchor support in Listing 3.

10/13/09 12:08 PMCreate an Eclipse-based application using the Graphical Editing Framework

Page 10 of 19http://www.ibm.com/developerworks/opensource/library/os-eclipse-gef11/

Listing 3. Adding anchor support to the node EditPart

public class MyNodeEditPart
 extends AbstractGraphicalEditPart
 implements NodeEditPart
{
 ...
 public ConnectionAnchor getSourceConnectionAnchor(ConnectionEditPart connection) {
 return new ChopboxAnchor(getFigure());
 }
 public ConnectionAnchor getSourceConnectionAnchor(Request request) {
 return new ChopboxAnchor(getFigure());
 }
 public ConnectionAnchor getTargetConnectionAnchor(ConnectionEditPart connection) {
 return new ChopboxAnchor(getFigure());
 }
 public ConnectionAnchor getTargetConnectionAnchor(Request request) {
 return new ChopboxAnchor(getFigure());
 }

 ...
}

The methods that take a connection are the ones used when setting the anchors on
an existing connection EditPart. The other two methods take a Request. These
methods are used during editing when the user is creating a new connection. For this
example, a chopbox anchor is returned in all cases. A chopbox anchor just finds the
point at which a line intersects the bounding box of the node's figure. Implementing
the connection EditPart is relatively straightforward. Note that it isn't even necessary
to create the figure, since the default creation of PolylineConnection is suitable for
most uses (see Listing 4).

Listing 4. Initial connection EditPart implementation

public class MyConnectionEditPart extends AbstractConnectionEditPart {
 protected void createEditPolicies() {
 ...
 }

 protected void refreshVisuals() {
 PolylineConnection figure = (PolylineConnection)getFigure();
 MyConnection connx = (MyConnection)getModel();
 figure.setForegroundColor(MagicHelper.getConnectionColor(connx));
 figure.setRoutingConstraint(MagicHelper.getConnectionBendpoints(connx));
 }
}

10/13/09 12:08 PMCreate an Eclipse-based application using the Graphical Editing Framework

Page 11 of 19http://www.ibm.com/developerworks/opensource/library/os-eclipse-gef11/

Listening to the model

After creation, an EditPart should start listening for change notifications from the
model. Since GEF is model neutral, all applications must add their own listeners and
handle the resulting notifications. When notification is received, the handler may call
one of the provided methods to force a refresh. For example, if a child has been
deleted, calling refreshChildren() will cause the corresponding EditPart and its figure
to be removed. For simple attribute changes, refreshVisuals() can be used. As was
mentioned previously, this method may be factored into multiple parts to avoid
needlessly updating every displayed attribute.

Adding listeners and forgetting to remove them is a frequent cause for memory
leaks. For this reason, the point where you add and remove listeners is clearly
spelled out in the API. Your EditParts must extend activate() to add any listeners
that must later be removed. Remove those same listeners by extending deactivate().
Listing 5 shows the additions to the node EditPart implementation for model
notification.

Listing 5. Listening for model changes in a node EditPart

public class MyNodeEditPart
extends AbstractGraphicalEditPart
 implements NodeEditPart, ModelListener
{
 ...

 public void activate() {
 super.activate();
 ((MyModel)getModel()).addModelListener(this);
 }

 public void deactivate() {
 ((MyModel)getModel()).removeModelListener(this);
 super.deactivate();
 }

 public void modelChanged(ModelEvent event) {
 if (event.getChange().equals("outgoingConnections"))
 refreshSourceConnections();
 else if (event.getChange().equals("incomingConnections"))
 refreshTargetConnections();
 else if (event.getChange().equals("icon")
 || event.getChange().equals("name"))
 refreshVisuals();
 }

 ...
}

10/13/09 12:08 PMCreate an Eclipse-based application using the Graphical Editing Framework

Page 12 of 19http://www.ibm.com/developerworks/opensource/library/os-eclipse-gef11/

Editing the model

Tip No. 2
Don't forget to actually implement the NodeEditPart interface. Otherwise, your
methods will never get called.

Most importantly, know when to use ConnectionEditParts and when not to use them.
A connection EditPart is used when there is something that the user can select and
interact with. It probably has a direct correlation to an object in the model and can
generally be deleted by itself.

If you just have a node or container that needs to draw a line, just draw the line in
the figure's paint method or compose a figure that contains a Polyline figure.

A connection must have a source and a target at all times. If you need a connection
that can exist without source or target, you are better off extending just
AbstractGraphicalEditPart and using a connection figure.

So far, we have covered how EditParts are created, how they create their visuals,
and how they update themselves when the model changes. In addition to this,
EditParts are also the primary players in making changes to the model. This happens
when a request for a command is sent to the EditPart. Requests are also used to ask
EditParts to show feedback such as during a mouse drag. The EditPart either
supports, prevents, or ignores a given request. The types of requests that are
supported or prevented determines the EditPart's behavior.

The focus so far has been on mapping the model's structure and properties into the
view. It turns out, this is basically all you do in the EditPart class itself. Its behavior
is determined by a set of pluggable helpers called EditPolicies. In the provided
examples we have ignored the method createEditPolicies(). Once you implement this
method, you are pretty much done with your EditPart. Of course, you'll still need to
provide edit policies that know how to modify your application's model. Since editing
behavior is pluggable, when developing your various EditPart implementations, you
can create a class hierarchy based around the task of mapping the model to the view
and handling model updates.

Step 4: Bringing it all together

At this point, you have all the pieces needed to graphically display your model. For
final assembly, we will be using an IEditorPart. However, GEF's viewers can also be
used in views, dialogs, or just about anywhere you can place a control. For this step,

10/13/09 12:08 PMCreate an Eclipse-based application using the Graphical Editing Framework

Page 13 of 19http://www.ibm.com/developerworks/opensource/library/os-eclipse-gef11/

you must have your UI plug-in, which will define the editor and file extension for the
resources being opened. Your model may be defined in the same or in a separate
plug-in. You will also need a pre-populated model, since there is no editing
functionality yet.

There are several ways to provide sample model data. For the purposes of this
example, we will create the model in code when the editor is opened, ignoring the
actual contents of the file. To do this, we'll assume the existence of a test factory.
Alternatively, you can create an example wizard that pre-populates the resource with
data (normal wizards would just create an empty diagram). Finally, you may be able
to write the document's contents by hand with a text editor.

Now that you have a sample model, let's create the editor part that will display the
model. A quick way to get started is to subclass or copy GEF's GraphicalEditor. This
class creates an instance of ScrollingGraphicalViewer, and constructs a canvas to
serve as the editor's control. It is a convenience class provided to help you get
started with GEF; a properly behaved Eclipse editor has many other things to
consider, such as pessimistic team environments, the resource being deleted or
moved, etc.

Listing 6 shows a sample editor implementation. There are several abstract methods
that must be implemented. For the scope of this article, we will be ignoring model
persistence and markers. You must do two things to get your diagram to appear in
the graphical viewer: configure the viewer with your own EditPart factory to construct
the EditParts from Step 3, then pass in the diagram model object to the viewer.

Listing 6. Implementing your editor part

public class MyEditor extends GraphicalEditor {
 public MyEditor() {
 setEditDomain(new DefaultEditDomain(this));
 }

 protected void configureGraphicalViewer() {
 super.configureGraphicalViewer(); //Sets the \
 viewer's background to System "white"
 getGraphicalViewer().setEditPartFactory(new MyGraphicalEditpartFactory());
 }

 protected void initializeGraphicalViewer() {
 getGraphicalViewer().setContents(MagicHelper.constructSampleDiagram());
 }
 public void doSave(IProgressMonitor monitor) {
 ...
 }
 public void doSaveAs() {
 ...
 }

http://www.ibm.com/developerworks/opensource/library/os-eclipse-gef11/#step3

10/13/09 12:08 PMCreate an Eclipse-based application using the Graphical Editing Framework

Page 14 of 19http://www.ibm.com/developerworks/opensource/library/os-eclipse-gef11/

 public void gotoMarker(IMarker marker) {
 ...
 }
 public boolean isDirty() {
 ...
 }
 public boolean isSaveAsAllowed() {
 ...
 }
}

Next steps

We've gone from having just a model to displaying that model in a graphical editor.
But we have only laid the foundation. You can get more information about GEF by
reading the GEF Programmer's Guide, provided with the GEF SDK. Since no sample
directly accompanies this article, I recommend that GEF beginners look at the shapes
example, along with the excellent article "A Shape Diagram Editor," by Bo Majewski.
(See Resources.)

As GEF continues to mature, there have been a few robust frameworks that have
been built on top of GEF to ease the development of graphical editors in Eclipse.
These frameworks need to be mentioned because in many cases, developers are
using these frameworks instead of directly building on top of GEF itself.

Graphical Modeling Framework (GMF)

The GMF project was born out of the frustration in creating graphical editors
manually (especially in the context of using the Eclipse Modeling Framework). GMF
allows you to effectively map (see Figure 5) your semantic (business logic) model to
a notional (graphical) model. Once this mapping is complete using a few
configuration files, GMF will generate a fully functional graphical editor for you.

Figure 5. GMF development flow

http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.gef.examples.shapes/?root=Tools_Project
http://www.ibm.com/developerworks/opensource/library/os-eclipse-gef11/#resources

10/13/09 12:08 PMCreate an Eclipse-based application using the Graphical Editing Framework

Page 15 of 19http://www.ibm.com/developerworks/opensource/library/os-eclipse-gef11/

If your use cases have you using the Eclipse Modeling Framework for your model, it
is highly recommend that you use GMF instead of GEF directly. Read Chris
Aniszczyk's "Learn Eclipse GMF in 15 minutes" for more information (see Resources).

Zest

Zest is a lightweight visualization toolkit (see Figure 6) that provides a JFace-like
wrapping on top of traditional GEF editors. Zest has been modeled after JFace, and
all the Zest views conform to the same standards and conventions as existing Eclipse
views (think label and content providers). This means that the providers, actions, and
listeners used within existing applications can be leveraged within Zest. Also, Zest
has reusable layouts that can be applied to your visualizations with ease.

Figure 6. Sample Zest Visualizations

http://www.ibm.com/developerworks/opensource/library/os-eclipse-gef11/#resources

10/13/09 12:08 PMCreate an Eclipse-based application using the Graphical Editing Framework

Page 16 of 19http://www.ibm.com/developerworks/opensource/library/os-eclipse-gef11/

The Zest API is straightforward and to create a graph, you simply create a new
Graph object and add the respective nodes and edges.

Listing 7. Sample Zest code

public static void main(String[] args) {
 // Create the shell
 Display d = new Display();
 Shell shell = new Shell(d);
 shell.setText("GraphSnippet1");
 shell.setLayout(new FillLayout());
 shell.setSize(400, 400);

 Graph g = new Graph(shell, SWT.NONE);

 GraphNode n = new GraphNode(g, SWT.NONE, "Paper");
 GraphNode n2 = new GraphNode(g, SWT.NONE, "Rock");
 GraphNode n3 = new GraphNode(g, SWT.NONE, "Scissors");
 new GraphConnection(g, SWT.NONE, n, n2);
 new GraphConnection(g, SWT.NONE, n2, n3);
 new GraphConnection(g, SWT.NONE, n3, n);
 g.setLayoutAlgorithm(
 new SpringLayoutAlgorithm(
 LayoutStyles.NO_LAYOUT_NODE_RESIZING),true);

 shell.open();
 while (!shell.isDisposed()) {
 while (!d.readAndDispatch()) {
 d.sleep();
 }
 }

10/13/09 12:08 PMCreate an Eclipse-based application using the Graphical Editing Framework

Page 17 of 19http://www.ibm.com/developerworks/opensource/library/os-eclipse-gef11/

 }

If your use cases only worry about visualization and not editing, it's recommended
that you use the facilities that Zest provides. If you happen to be working with
another visualization toolkit, Zest's layouts were developed in such a way that they
can be reused by other toolkits.

Conclusion

The goal of this article was to provide a solid introduction to GEF, which was
discussed in the first five sections of this article. After that, we discussed several
options available for the graphically inclined Eclipse developer outside the GEF realm.
In the end, it's important for you to evaluate your use cases and see what graphical
framework matches up best to your needs.

Resources

Learn

Visit Eclipse Graphical Editing Framework (GEF) to learn more about the
Graphical Editing Framework.

New to GEF and want a simple yet concrete example? Check out the shapes
example article by Bo Majewski: "A Shape Diagram Editor" at Eclipse.org.

Check out the GEF schema editor article "Building a Database Schema Diagram
Editor with GEF" at Eclipse.org.

Read the GEF Programmer's Guide for (almost-)definitive documentation on
GEF.

Check out the Eclipse Modeling Framework (EMF) for tutorials and articles that
can be useful for the EMF novice.

The EMF team has a good introductory tutorial titled "Generating an EMF
Model."

If you need the definitive source on EMF, the book Eclipse Modeling Framework:
A Developer's Guide is a great reference.

For a quick overview of GMF, read "Learn Eclipse GMF in 15 minutes."

http://www.eclipse.org/gef
http://www.eclipse.org/articles/Article-GEF-diagram-editor/shape.html
http://www.eclipse.org/articles/Article-GEF-editor/gef-schema-editor.html
http://help.eclipse.org/help32/topic/org.eclipse.gef.doc.isv/guide/guide.html#Overview
http://www.eclipse.org/emf
http://dev.eclipse.org/viewcvs/indextools.cgi/*checkout*/org.eclipse.emf/doc/org.eclipse.emf.doc/tutorials/clibmod/clibmod.html
http://ibmdw.safaribooksonline.com/0131425420
http://www.ibm.com/developerworks/opensource/library/os-ecl-gmf/

10/13/09 12:08 PMCreate an Eclipse-based application using the Graphical Editing Framework

Page 18 of 19http://www.ibm.com/developerworks/opensource/library/os-eclipse-gef11/

Frederic Plante wrote an article titled "Introducing the GMF Runtime," detailing
the advanced features of the GMF runtime.

The Graphical Modeling Framework wiki offers tutorials and plenty of information
about advanced GMF features.

Learn about using the various Eclipse modeling frameworks via this webinar with
Richard Gronback and Ed Merks.

Learn about Zest: The Eclipse Visualization Toolkit at Eclipse.org.

For an introduction to the Eclipse platform, see "Getting started with the Eclipse
Platform."

Check out the "Recommended Eclipse reading list."

Browse all the Eclipse content on developerWorks.

Expand your Eclipse skills by checking out IBM developerWorks' Eclipse project
resources.

To listen to interesting interviews and discussions for software developers, check
out developerWorks podcasts.

Stay current with developerWorks' Technical events and webcasts.

Check out upcoming conferences, trade shows, webcasts, and other Events
around the world that are of interest to IBM open source developers.

Visit the developerWorks Open source zone for extensive how-to information,
tools, and project updates to help you develop with open source technologies
and use them with IBM's products.

Get products and technologies

Download Eclipse and get started with Eclipse now.

Check out the latest Eclipse technology downloads at IBM alphaWorks.

Innovate your next open source development project with IBM trial software,
available for download or on DVD.

http://www.eclipse.org/articles/Article-Introducing-GMF/article.html
http://wiki.eclipse.org/index.php/Graphical_Modeling_Framework
http://adobedev.breezecentral.com/p17835008/
http://www.eclipse.org/mylar/zest.php
http://www.ibm.com/developerworks/opensource/library/os-ecov/
http://www.ibm.com/developerworks/library/os-ecl-read
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=eclipse
http://www.ibm.com/developerworks/opensource/top-projects/eclipse.html
http://www.ibm.com/developerworks/podcast/
http://www.ibm.com/developerworks/offers/techbriefings/?S_TACT=105AGX03&S_CMP=art
http://www.ibm.com/developerworks/views/opensource/events.jsp
http://www.ibm.com/developerworks/opensource
http://www.eclipse.org/downloads/
http://www.alphaworks.ibm.com/eclipse
http://www.alphaworks.ibm.com/
http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX44

10/13/09 12:08 PMCreate an Eclipse-based application using the Graphical Editing Framework

Page 19 of 19http://www.ibm.com/developerworks/opensource/library/os-eclipse-gef11/

Discuss

Want to contribute to GEF? Check out the GEF development mailing list.

Check out the GMF newsgroups to learn about the intricacies of GMF. (Selecting
this will launch your default Usenet news reader application and open
eclipse.modeling.gmf.)

The Eclipse Platform newsgroups should be your first stop to discuss questions
regarding Eclipse. (Selecting this will launch your default Usenet news reader
application and open eclipse.platform.)

Check out the GEF newsgroups for development help. (Selecting this will launch
your default Usenet news reader application and open eclipse.tools.gef.)

The Eclipse newsgroups has many resources for people interested in using and
extending Eclipse.

Participate in developerWorks blogs and get involved in the developerWorks
community.

About the authors

Chris Aniszczyk is a software engineer at IBM Lotus focusing on OSGi related
development. He is an open source enthusiast at heart, and he works on the Gentoo
Linux distribution and is a committer on a few Eclipse projects (PDE, ECF, EMFT).
He's always available to discuss open source and Eclipse over a frosty beverage.

Randy Hudson is a software engineer for IBM at Research Triangle Park, North
Carolina. As the technical lead for the Graphical Editing Framework (GEF), he has
helped transition the once internal project to an open source technology. His current
work focuses on usability, graphical editing, graph layout, and edge routing. You can
contact Randy at buchu at nc.rr.com.

Trademarks | My developerWorks terms and conditions

http://dev.eclipse.org/mailman/listinfo/gef-dev
news://news.eclipse.org/eclipse.modeling.gmf
news://news.eclipse.org/eclipse.platform
news://news.eclipse.org/eclipse.tools.gef
http://www.eclipse.org/newsgroups/
http://www.ibm.com/developerworks/blogs
http://www.gentoo.org/
mailto:zx@us.ibm.com
mailto:buchu@nc.rr.com
http://www.ibm.com/developerworks/ibm/trademarks/
https://www.ibm.com/developerworks/mydeveloperworks/terms/

