
10/13/09 12:05 PMDebugging with the Eclipse Platform

Page 1 of 13http://www.ibm.com/developerworks/opensource/library/os-ecbug/

Debugging with the Eclipse Platform
Use Eclipse for debugging your software projects

Chris Aniszczyk, Software Engineer, IBM　
Pawel Leszek (pawel@eva-consulting.pl), Independent Software Consultant,
Freelance

Summary: Find out how to use the built-in debugging features in the Eclipse
Platform for debugging software projects. Debugging is something programmers can't
avoid. There are many ways to go about it, but it essentially comes down to finding
the code responsible for a bug. For example, one of the most common errors in
Linux® applications is known as a segmentation fault. This occurs when a program
attempts to access memory not allocated to it and terminates with a segmentation
violation. To fix this kind of error, you need to find the line of code that triggers the
behavior. Once the line of code in question has been found, it is also useful to know
the context in which the error occurs, and the associated values, variables, and
methods. The use of a debugger makes finding this information quite simple.

Date: 01 May 2007
Level: Intermediate
Activity: 16255 views
Comments: 0 (Add comments)

 Average rating

Editor's note: The following article, originally written by Pawel Leszek in May 2003,
was updated in April 2007 by Chris Aniszczyk.

The Eclipse debugger and the Debug view

The Eclipse SDK -- particularly, the Java™ Development Tools (JDT) project --
features a built-in Java debugger that provides all standard debugging functionality,
including the ability to perform step execution, to set breakpoints and values, to
inspect variables and values, and to suspend and resume threads. Additionally, you
can debug applications running on a remote machine. The Eclipse Platform is robust
in such a way that other programming languages can use the debug facilities for
their respective language runtimes. As you will see below, the same Eclipse Debug
view is also available for the C/C++ programming languages.

The Eclipse Platform Workbench and its tools are built around the JDT components,

http://www.ibm.com/developerworks/opensource/library/os-ecbug/#author1
http://www.ibm.com/developerworks/opensource/library/os-ecbug/#author2
mailto:pawel@eva-consulting.pl?subject=Debugging%20with%20the%20Eclipse%20Platform
http://www.ibm.com/developerworks/opensource/library/os-ecbug/#icomments
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

10/13/09 12:05 PMDebugging with the Eclipse Platform

Page 2 of 13http://www.ibm.com/developerworks/opensource/library/os-ecbug/

which provide the following features to Eclipse:

Project management tools
Perspectives and views
Builder, editor, search, and build functions
The debugger

The Eclipse debugger itself exists as a standard set of plug-ins included within
Eclipse. Eclipse also has a special Debug view that allows you to manage the
debugging or running of a program in the Workbench. It displays the stack frame for
the suspended threads for each target you're debugging. Each thread in your
program appears as a node in the tree, and the Debug view displays the process for
each target you're running. If the thread is suspended, its stack frames are shown as
child elements.

Before you begin using the Eclipse debugger, it is assumed that you have the
appropriate Java SDK/JRE (I recommend you use Java VM V1.4) and the Eclipse
Platform SDK V3.3 installed, and that both are running without problems. In general,
it's a good idea to test debugging options using the Eclipse samples first. If you want
to develop and debug C/C++ projects, you will also need to get and install the
C/C++ Development Tools (CDT). For links to the Java SDK/JRE, the Eclipse Platform
and samples, and the CDT, see Resources. Figure 1 shows the general view of the
Debug perspective.

Figure 1. General view of Eclipse Debug perspective

http://www.ibm.com/developerworks/opensource/library/os-ecbug/#Resources

10/13/09 12:05 PMDebugging with the Eclipse Platform

Page 3 of 13http://www.ibm.com/developerworks/opensource/library/os-ecbug/

Debugging Java language programs

Before you are able to debug your project, the code needs to compile and run
cleanly. You first need to create a run configuration for your application and make
sure it starts properly. Next, you need to set up the debug configuration in a similar
way using the Run > Debug menu. You also need to select the class to be used as
the main Java class by the debugger (see Figure 2). You can have as many debug
configurations for a single project as you wish. When the debugger is started (from
Run > Debug), it is opened in a new window, and you are ready to start debugging.

Figure 2. Setting the project's main Java class in the debug configuration

10/13/09 12:05 PMDebugging with the Eclipse Platform

Page 4 of 13http://www.ibm.com/developerworks/opensource/library/os-ecbug/

Next, we discuss some of the common debugging practices in Eclipse.

Setting breakpoints

When you launch your application for debugging, Eclipse switches to the Debug
perspective automatically. Undoubtedly, the most common debugging procedure is to
set breakpoints that will allow the inspection of variables and the values inside
conditional statements or loops. To set breakpoints in the Package Explorer view of
the Java perspective, double-click the selected source code file to open it in an
editor. Walk through the code and place your cursor on the marker bar (along the
left edge of the editor area) on the line with the suspected code. Double-click to set
the breakpoint.

Figure 3. Two breakpoints markers visible in the left margin of the editor

10/13/09 12:05 PMDebugging with the Eclipse Platform

Page 5 of 13http://www.ibm.com/developerworks/opensource/library/os-ecbug/

Now start the debugging session from the Run > Debug menu. It is important not
to put multiple statements on a single line because you cannot step over or set line
breakpoints on more than one statement on the same line.

Figure 4. View indicates the currently executing line with arrow in left margin

There is also a convenient Breakpoints view to manage all your breakpoints.

Figure 5. Breakpoints view

Conditional breakpoints

Once you know where an error occurs, you will want to see what the program is
doing right before it crashes. One way to do this is to step through every statement
in the program, one at a time, until you reach the point of concern. Sometimes it's
better to just run a section of code and stop execution at that point so you can

10/13/09 12:05 PMDebugging with the Eclipse Platform

Page 6 of 13http://www.ibm.com/developerworks/opensource/library/os-ecbug/

examine data at that location. It's possible to declare conditional breakpoints
triggered whenever the value of an expression changes (see Figure 6). In addition,
code assist is available when typing in the conditional expression.

Figure 6. Setting the conditional breakpoint trigger

Evaluating expressions

To evaluate expressions in the editor in the Debug perspective, select the entire line
where the breakpoint is set, and from the context menu, select the Inspect option via
Ctrl+Shift+I or right-clicking on the variable you're interested in (see Figure 7). The
expression is evaluated in the context of the current stack frame, and the results are
displayed in the Expressions view of Display window.

Figure 7. Evaluating expressions with the Inspect option

10/13/09 12:05 PMDebugging with the Eclipse Platform

Page 7 of 13http://www.ibm.com/developerworks/opensource/library/os-ecbug/

Scrapbooking your live code

The Display view allows you to manipulate live code in a scrapbook type fashion (see
Figure 8). To manipulate a variable, simply type the name of the variable in the
Display view, and you'll be greeted with a familiar content assist.

Figure 8. The Display view

When the debugger stops at a breakpoint, you can continue the debugger session by
selecting the Step Over option from the Debug view toolbar (see Figure 9). This steps
over the highlighted line of code and continues execution at the next line in the same
method (or it will continue in the method from which the current method was called).
The variables that are changed as a result of the last step are highlighted in a color
(default is yellow). Colors can be changed in the debug preference pages.

Figure 9. Variables changing colors

10/13/09 12:05 PMDebugging with the Eclipse Platform

Page 8 of 13http://www.ibm.com/developerworks/opensource/library/os-ecbug/

To suspend the execution of threads in the Debug view, select a running thread and
click Suspend in the Debug view toolbar. The current call stack for the thread is
displayed, and the current line of execution is highlighted in the editor in the Debug
perspective. When a thread is suspended, the cursor is placed over a variable in the
Java editor, and the value of that variable is displayed in a small hovering window.
Also, the top stack frame of the thread is automatically selected, and the visible
variables in that stack frame are displayed in the Variables view. You can examine
the appropriate variable in the Variables view by clicking its name.

Hotswap Bug Fixing: On-the-fly code fixing

If you are running Java Virtual Machine (JVM) V1.4 or higher, Eclipse supports a
feature called Hotswap Bug Fixing (not available in JVM V1.3 or lower). It allows the
changing of source code during a debugger session, which is better than exiting the
application, changing the code, recompiling, then starting another debugging session.
To use this function, simply change the code in the editor and resume debugging.
This feature became available because JVM V1.4 is compatible with the Java Platform
Debugger Architecture (JPDA). JPDA implements the ability to substitute modified
code in a running application. This is, of course, particularly useful when it takes a
long time to start your application or to get to the point where it fails.

If the program has not fully executed when you are done debugging, select the
Terminate option from the context menu in the Debug view. A common mistake is to
use Debug or Run instead of Resume while you're in a debugger session. This will
launch another debugger session rather than continuing the current one.

Remote debugging

The Eclipse debugger offers an interesting option for debugging remote applications.
It can connect to a remote VM running a Java application and attach itself to the

10/13/09 12:05 PMDebugging with the Eclipse Platform

Page 9 of 13http://www.ibm.com/developerworks/opensource/library/os-ecbug/

application. Working with a remote debugging session is largely similar to local
debugging. However, a remote debugging configuration requires different settings in
the Run > Debug window. You need to first select the Remote Java Application
entry in the left-hand view, then click New. A new remote launch configuration is
created, and three tabs are shown: Connect, Source, and Common.

In the Project field of the Connect tab, select which project to use as a reference for
the launch (for source code lookup). In the Host field of the Connect tab, type the IP
address or domain name of the remote host where the Java program is running. In
the Port field of the Connect tab, type the port where the remote VM is accepting
connections. Generally, this port is specified when the remote VM is launched. Select
Allow termination of remote VM option when you want the debugger to determine
whether the Terminate command is available in a remote session. Select this option
if you want to be able to terminate the VM to which you are connecting. Now when
you select the Debug option, the debugger attempts to connect to a remote VM at
the specified address and port, and the result is displayed in the Debug view.

If the launcher is unable to connect to a VM at the specified address, an error
message appears. In general, the availability of remote debugging functionality
strictly depends on the Java VM that runs on the remote host. Figure 10 shows the
setting of connection properties for a remote debugging session.

Figure 10. Setting connection properties for a remote debugging session

10/13/09 12:05 PMDebugging with the Eclipse Platform

Page 10 of 13http://www.ibm.com/developerworks/opensource/library/os-ecbug/

Debugging other languages

Although the Java language is the most widely used for Eclipse, it is an extensible
platform that can support many others. Eclipse supports C/C++ through the C/C++
Development Tools (CDT) project. The CDT extends the standard Eclipse Debug view
with functions for debugging C/C++ code, and the CDT Debug view allows you to
manage the debugging of C/C++ projects in the workbench. The CDT doesn't include
its internal debugger, but it offers a front end to GNU GDB debugger, which must be
available locally. There are other projects like the PHP Development Tools (PDT) that
offer their respective debuggers (see Figure 11).

Figure 11. PHP debugger

Conclusion

The Eclipse Platform provides a built-in Java language debugger with standard
debugging functionality, including the ability to perform step execution, to set
breakpoints and values, to inspect variables and values, and to suspend and resume
threads. It can also be used to debug applications running on a remote machine. The
Eclipse Platform is mainly a Java development environment, but the same Eclipse
Debug view is also available for the C/C++, PHP and many more programming
languages.

Acknowledgements

Thanks to Tyler Anderson for creating Figure 11.

Resources

10/13/09 12:05 PMDebugging with the Eclipse Platform

Page 11 of 13http://www.ibm.com/developerworks/opensource/library/os-ecbug/

Learn

Visit Eclipse.org for comprehensive information on the program and how to use
it.

Visit PlanetEclipse.org to stay in tune with Eclipse community happenings.

Learn about the C/C++ development tools at Eclipse.org's CDT project.

Check out the Ajax Tools Framework (ATF) flash page and project page to learn
about JavaScript debugging.

Learn in-depth about Eclipse's Debug Framework through this EclipseCon
tutorial.

Check out the "Recommended Eclipse reading list."

Browse all the Eclipse content on developerWorks.

Users new to Eclipse should look at the Eclipse start here.

Expand your Eclipse skills by checking out IBM developerWorks' Eclipse project
resources.

To listen to interesting interviews and discussions for software developers, check
out developerWorks podcasts.

For an introduction to the Eclipse platform, see "Getting started with the Eclipse
Platform."

Stay current with developerWorks' Technical events and webcasts.

Check out upcoming conferences, trade shows, webcasts, and other Events
around the world that are of interest to IBM open source developers.

Visit the developerWorks Open source zone for extensive how-to information,
tools, and project updates to help you develop with open source technologies
and use them with IBM's products.

Get products and technologies

Check out the latest Eclipse technology downloads at IBM alphaWorks.

http://www.eclipse.org/
http://www.planeteclipse.org/
http://www.eclipse.org/cdt
http://www.eclipse.org/atf/flash/index4.php
http://www.eclipse.org/atf
http://www.eclipsecon.org/2006/Sub.do?id=30
http://www.ibm.com/developerworks/library/os-ecl-read
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=eclipse
http://www.ibm.com/developerworks/opensource/top-projects/eclipse-starthere.html
http://www.ibm.com/developerworks/opensource/top-projects/eclipse.html
http://www.ibm.com/developerworks/podcast/
http://www.ibm.com/developerworks/opensource/library/os-ecov/
http://www.ibm.com/developerworks/offers/techbriefings/?S_TACT=105AGX03&S_CMP=art
http://www.ibm.com/developerworks/views/opensource/events.jsp
http://www.ibm.com/developerworks/opensource
http://www.alphaworks.ibm.com/eclipse
http://www.alphaworks.ibm.com/

10/13/09 12:05 PMDebugging with the Eclipse Platform

Page 12 of 13http://www.ibm.com/developerworks/opensource/library/os-ecbug/

Download IBM product evaluation versions, and get your hands on application
development tools and middleware products from DB2®, Lotus®, Rational®,
Tivoli®, and WebSphere®.

Innovate your next open source development project with IBM trial software,
available for download or on DVD.

Discuss

Check out the Eclipse CDT newsgroups for development help around C/C++
debugging. (Selecting this will launch your default Usenet news reader
application and open eclipse.tools.cdt.)

Check out the Eclipse ATF newsgroups for development help around JavaScript
debugging. (Selecting this will launch your default Usenet news reader
application and open eclipse.webtools.atf.)

Check out the Eclipse platform newsgroups to ask questions about debugging
and other Eclipse platform related questions. (Selecting this will launch your
default Usenet news reader application and open eclipse.platform.)

The Eclipse Platform newsgroups should be your first stop to discuss questions
regarding Eclipse. (Selecting this will launch your default Usenet news reader
application and open eclipse.platform.)

The Eclipse newsgroups has many resources for people interested in using and
extending Eclipse.

Participate in developerWorks blogs and get involved in the developerWorks
community.

About the authors

Chris Aniszczyk is a software engineer at IBM Lotus focusing on OSGi related
development. He is an open source enthusiast at heart, and he works on the Gentoo
Linux distribution and is a committer on a few Eclipse projects (PDE, ECF, EMFT).
He's always available to discuss open source and Eclipse over a frosty beverage.

http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX01&S_CMP=ART
http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX44
news://news.eclipse.org/eclipse.tools.cdt
news://news.eclipse.org/eclipse.webtools.atf
news://news.eclipse.org/eclipse.platform
news://news.eclipse.org/eclipse.platform
http://www.eclipse.org/newsgroups/
http://www.ibm.com/developerworks/blogs
http://www.gentoo.org/
mailto:zx@us.ibm.com

10/13/09 12:05 PMDebugging with the Eclipse Platform

Page 13 of 13http://www.ibm.com/developerworks/opensource/library/os-ecbug/

Pawel Leszek, a Studio B author, is an independent software consultant and an
author specializing in Linux/Win/Mac OS system architecture and administration. He
has experience with many operating systems, programming languages, and network
protocols, especially Lotus Domino and DB2. Pawel is also the author of series of
articles for "LinuxWorld" and a Linux columnist for the Polish edition of "PC World."
Pawel lives in Warsaw with his wife and sweet little daughter. Questions and
comments are welcome; e-mail the author directly at pawel.leszek@ipgate.pl.

Trademarks | My developerWorks terms and conditions

http://www.studiob.com/
mailto:pawel.leszek@ipgate.pl
http://www.ibm.com/developerworks/ibm/trademarks/
https://www.ibm.com/developerworks/mydeveloperworks/terms/

