
10/13/09 9:40 AMPlug-in development 101, Part 1: The fundamentals

Page 1 of 17http://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev1/

Plug-in development 101, Part 1: The
fundamentals
Learn the basics of Eclipse plug-in development.

Chris Aniszczyk, Software Engineer, IBM, Software Group

Summary: Plug-in development in Eclipse is somewhat of an art form. If you're
new to the concept of plug-ins, especially in the context of OSGi and Eclipse, it can
be quite burdensome learning the myriad tools Eclipse has to help you write plug-
ins. The purpose of this article is to help you learn some basic plug-in development
skills with some best practices sprinkled in for good measure.

Date: 12 Feb 2008
Level: Intermediate
Activity: 6298 views
Comments: 0 (Add comments)

 Average rating (based on 54 votes)

This "Plug-in development 101" series of articles is all about developing plug-ins. But
before we get started, we need to ensure that we have a proper environment in
which to develop plug-ins. The first step is to download an Eclipse distribution that
has the Plug-in Development Environment (PDE) in it from Eclipse.org. I recommend
downloading the latest version of Eclipse Classic. In this series, we will use a
milestone release of Eclipse V3.4 (M5). Once this done, you're ready to go. (See
Resources to learn where to find Eclipse and additional background information if you
are new to Eclipse.)

To make it easier to understand plug-in development, this article will follow a
workflow detailed in Figure 1. In Part 1 of this series, we will focus on the first five
steps of the workflow. We will leave the last two steps for Part 2, which will focus on
rich-client applications.

Figure 1. Plug-in development workflow

http://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev1/#author1
http://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev1/#icomments
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=plug-in+development+101
http://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev1/#resources

10/13/09 9:40 AMPlug-in development 101, Part 1: The fundamentals

Page 2 of 17http://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev1/

What's this OSGi business about?
In V3.0, Eclipse made a big leap by choosing OSGi to replace the rickety Eclipse
plug-in technology found in earlier versions. The OSGi Alliance is an independent,
nonprofit corporation responsible for OSGi technology. It is akin to the Eclipse
Foundation in function. The OSGi Alliance is responsible for producing specifications
describing OSGi technology. In brief, OSGi technology provides a service-oriented
plug-in-based platform for application development. Various implementations are
based on these specifications. One of the most popular implementations is Equinox,
which is Eclipse's implementation of the specification. (See Resources for background
information.)

Before we dive into the details of plug-in creation, let's discuss what a plug-in
exactly is. Technically, a plug-in is a Java™ Archive (JAR) that is self-contained and
self-describing. It's self-containing because it houses the code and resources the
plug-in needs to run. It's self-describing because it includes information stating what
it is, what it requires from the world, and what it contributes to the world. In a plug-
in, you will generally see two descriptor files: a MANIFEST.MF and plugin.xml.

In the beginning, there was creation

The first part of the plug-in development workflow involves creating a plug-in
project. In Eclipse, this is easily done by selecting the New >Project... menu option.
In the wizard presented, select Plug-in Project as the type of project you want to
create.

Figure 2. New Plug-in Project wizard

http://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev1/#resources

10/13/09 9:40 AMPlug-in development 101, Part 1: The fundamentals

Page 3 of 17http://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev1/

Just like any other Eclipse project, the wizard asks you to choose a project name. I
suggest helloworld. There is also an option to choose a target platform. A target
platform in this context simply means whether you will target a version of Eclipse or
an OSGi framework like Equinox. In this case, we'll target the 3.3 version of Eclipse
to keep things straightforward. The next page of the New Plug-in Project wizard
focuses on plug-in content.

Figure 3. Plug-in content

10/13/09 9:40 AMPlug-in development 101, Part 1: The fundamentals

Page 4 of 17http://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev1/

On the plug-in content wizard page, we must complete a form to make our plug-in
compliant with Eclipse. The plug-in identifier is a field that represents a unique
identifier for your plug-in. No other plug-in can share the same identifier. The plug-
in version is composed of four segments (thee integers and a string) respectively
named major.minor.service.qualifier (see Resources for the Eclipse Plug-in Versioning
guide). The plug-in name simply represents a human-readable name. The plug-in
provider field is a human-readable string signifying the author of the plug-in. In
simple terms, the execution environment (EE) field represents what minimum JRE
your bundle is capable of running on (see Resources).

The wizard gives us an option to generate a plug-in activator. A plug-in activator is
simply a class that controls the life cycle of your plug-in (think of it as a start-and-
stop method). Customarily, the activator is responsible for setting up things and
properly disposing of resources when your plug-in isn't needed anymore. In this
case, we desire an activator, a plug-in that makes contributions to the UI, and we're
creating a Rich Client Platform (RCP) application (see Resources).

http://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev1/#resources
http://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev1/#resources
http://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev1/#resources

10/13/09 9:40 AMPlug-in development 101, Part 1: The fundamentals

Page 5 of 17http://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev1/

The final step in plug-in creation involves selecting a template (see Figure 4) to base
your new plug-in on. When you get more advanced in the creation of plug-ins, this
step is usually skipped. However, beginners need to start somewhere, and the
Eclipse SDK ships many templates to help you get started. In this case, we select the
basic Hello World with a view application.

Figure 4. Plug-in templates

Modification

Inside the MANIFEST.MF
If you're interested in the various headers available to you inside a MANIFEST.MF file,
read the OSGi specifications available from the OSGi Alliance (see Resources).

After completing the previous step, a new plug-in was created in the workspace.
We're now presented with an editor (see Figure 5) to help us work with the fresh

http://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev1/#resources

10/13/09 9:40 AMPlug-in development 101, Part 1: The fundamentals

Page 6 of 17http://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev1/

plug-in. The first page in the editor we see is the Overview page, which contains
modifiable plug-in identifier information with sections describing the various items
you can edit within our plug-in. For example, we see the identifier (ID) and version
fields we previously defined using the template shown in Figure 4.

Figure 5. Plug-in editor (Overview page)

Extensions and extension points

Extension points galore
As of Eclipse V3.3, there are more than 200 extension points found in the Eclipse
SDK. To see a list of what's extensible (i.e., extension points) in the SDK, check out
the Eclipse Foundation's document titled "Platform Extension Points" (see Resources).

The next step on our plug-in adventure involves adding an extension. However,
before we dive into the details, let's first understand two important topics when
developing extensible Eclipse plug-ins: extensions and extension points. Using a
simple analogy, you can think of an extension as a plug and an extension point as a
socket. Each extension point is unique and defines a contract to be adhered to. For
example, Eclipse ships with an org.eclipse.ui.editors extension point (socket) that
allows you to supply our own editor (the plug).

http://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev1/#resources

10/13/09 9:40 AMPlug-in development 101, Part 1: The fundamentals

Page 7 of 17http://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev1/

In our case, we'll create a new extension that contributes to the Eclipse toolbar. To
accomplish this, we will use a template (similar in concept to the template we used
to create our plug-in) for the org.eclipse.ui.actionSets extension point. From the
Overview page in the plug-in editor, select the Extensions link in the
Extension/Extension Point Content section. Click Add... and select the
org.eclipse.ui.actionSets template (see Figure 6) with all the defaults filled in.

Figure 6. Extension templates

Runtime

An important part of our plug-in is that it's self-describing. One of the things our
plug-in must describe is what it offers the world. In the context of Eclipse, these are
called exported packages. In our plug-in, we get to decide what packages we export
so other plug-ins can peek inside those packages to see they depend on our plug-in.
It's also possible to mark exported packages as being internal, which tells plug-in
developers that we don't consider the package in question as API. To specify
exported packages, we use the Runtime page within the manifest editor.

10/13/09 9:40 AMPlug-in development 101, Part 1: The fundamentals

Page 8 of 17http://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev1/

exported packages, we use the Runtime page within the manifest editor.

Figure 7. Runtime page

Dependencies

Plug-ins galore
There are so many plug-ins available in the Eclipse ecosystem to take advantage of
that it's possible to get lost. I suggest starting with two sites when searching for
plug-ins: The first stop is the Eclipse Foundation's project list, the second is Eclipse
Plug-in Central (EPIC) (see Resources).

In the previous section, we described what a plug-in must do to expose its
functionality to the world. Imagine you are a different plug-in and wanted to use the
aforementioned functionality. How would you express your interest in doing so? In
the context of Eclipse, these are called dependencies. In the simplest case, plug-ins
can depend on other plug-ins. For example, if you want to build your own editor in
Eclipse, you would need to depend on the org.eclipse.ui.editors plug-in. To specify
dependencies, you have to be on the Dependencies page of the plug-in editor.

Figure 8. Dependencies page

http://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev1/#resources

10/13/09 9:40 AMPlug-in development 101, Part 1: The fundamentals

Page 9 of 17http://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev1/

Note that on top of depending on individual plug-ins, you can choose to depend on
packages that are exported from plug-ins (see the Imported Packages section on the
Dependencies page). This is more of an advanced topic and useful when you don't
want to tie your plug-in to a specific implementation. For example, imagine
depending on a package com.company.xml.parser that supplied an XML parser. Now
picture having two plug-ins like com.company.xml.parser.mobile and
com.company.xml.parser.desktop that provided two different implementations of the
same XML parser, but for different environments.

Source editors

The Runtime and Dependencies pages are just visual representations of what is
specified mainly in MANIFEST.MF file. For advanced users wishing to edit the source
of this file by hand, PDE offers a source editor with code completion for the various
headers found in a plug-in manifest definition.

Figure 9. Source editing

10/13/09 9:40 AMPlug-in development 101, Part 1: The fundamentals

Page 10 of 17http://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev1/

Testing and debugging

The next step on our plug-in adventure involves testing and debugging. To test our
plug-in, Eclipse and PDE have a notion of self-hosting. Self-hosting simply means
that we're able to launch a new Eclipse with plug-ins we're currently working on in
our workspace without actually having to export or deploy any plug-ins. To launch a
new Eclipse, all you need to do is start another runtime workbench via the Overview
page's Testing section (see the Launch an Eclipse application link within the
Overview page). After a few seconds, you'll notice a new workbench pop-up with
your plug-in's sample action visible in the toolbar.

Figure 10. Self-hosting in Eclipse

10/13/09 9:40 AMPlug-in development 101, Part 1: The fundamentals

Page 11 of 17http://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev1/

Test-driven plug-in development
If you're interested starting with nothing but tests before you actually develop your
plug-in, it's possible to create a plug-in project that contains nothing but tests.
There's a special launch configuration called Plug-in JUnit Test to run tests contained
within plug-ins.

To launch your self-hosted plug-in in debug mode, simply click the Launch an
Eclipse application in debug mode link in the Testing section of the Overview
page. To actually debug your plug-in, you need to set relevant breakpoints. If you're
new to debugging in Eclipse, I recommend checking out the developerWorks article
"Debugging with the Eclipse Platform" to help get you started (see Resources).

To set more fine-grained options about launching or debugging your plug-in, go to
the Launch Configurations dialog, which can be invoked using the Run > Run
Configurations... menu option. The relevant launch configuration type for your
plug-in is called an "Eclipse Application" since what we're launching is indeed an
Eclipse application (see Figure 11). Within the launch configuration, you can set
things like arguments and have control over which JRE is used to launch your
application.

Figure 11. Launch configurations dialog

http://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev1/#resources

10/13/09 9:40 AMPlug-in development 101, Part 1: The fundamentals

Page 12 of 17http://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev1/

Externalizing strings

A common step in plug-in development is internationalization. Once you get to a
point where your plug-in is useful and will be tested by multiple parties, you often
get a request to make sure your plug-in is capable of running in a different
language. Thankfully, the amount of work needed to externalize plug-in related
strings is minimal. In PDE, there is a wizard that can be invoked via right-clicking on
the Overview page of your plug-in and selecting the Externalize Strings... menu
item. After the selection, a wizard will be presented that displays all the strings that
are relevant to externalization.

Figure 12. The Externalize Strings wizard

10/13/09 9:40 AMPlug-in development 101, Part 1: The fundamentals

Page 13 of 17http://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev1/

In reality, this simply generates a plugin.properties file (that contains externalized
strings) for your plug-in and adds the Bundle-Localization header to your
MANIFEST.MF file. The Bundle-Localization header simply lets you define a name and
optional location for your externalized strings. In this case, the Bundle-Localization is
"plugin," which signifies that strings for various locales will be in files like
plugin.properties (see Figure 13) plugin_fr.properties or plugin_de.properties.
Anything after the underscore in the file name represents the locale.

Figure 13. The plugin.properties file

That's it! That's all that's involved to get started in internationalizing our plug-in. For

10/13/09 9:40 AMPlug-in development 101, Part 1: The fundamentals

Page 14 of 17http://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev1/

That's it! That's all that's involved to get started in internationalizing our plug-in. For
more information, I recommend reading these outdated yet still relevant articles from
the Eclipse corner: "How to Internationalize your Eclipse Plug-In" and "How to Test
Your Internationalized Eclipse Plug-In" (see Resources).

Organizing manifests

The next step on our journey is to organize our manifest files (i.e., MANIFEST.MF and
plugin.xml) with some best practices. PDE provides a convenient wizard that can be
invoked via the Overview page's Exporting section. Once the wizard is launched (see
Figure 14), you're presented with a variety of options that can be tweaked. The
defaults are very reasonable, but there are certain options like making sure there are
no stray keys in the plugin.properties file, which is very useful.

Figure 14. The Organize Manifests wizard

Conclusion

http://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev1/#resources

10/13/09 9:40 AMPlug-in development 101, Part 1: The fundamentals

Page 15 of 17http://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev1/

On the whole, this article's mission was to give an introduction to the basics of plug-
in development with some best practices sprinkled in. We accomplished that by
creating a sample plug-in and going through a typical plug-in development workflow.
Once the workflow is learned, it becomes much easier to develop plug-ins and even
easier to maintain them with best practices like the Organize Manifests wizard. Part 2
focuses on using the tooling available for developing rich-client applications and
finishing the rest of the plug-in development workflow presented in Figure 1.

Resources

Learn

Learn more about OSGi Alliance.

Learn more about Eclipse Plug-in Versioning at the Eclipse Foundation wiki.

See the Eclipse EE guide at the Eclipse Foundation wiki.

Learn more about the Eclipse Rich Client Platform.

To learn more about the Eclipse SDK, see the Eclipse Foundation documentation
titled "Platform Extension Points."

Need help debugging in Eclipse? Read "Debugging with the Eclipse Platform."

Good background information on internationalizing plug-ins can be found in the
Eclipse Foundation's articles "How to Internationalize your Eclipse Plug-In" and
"How to Test Your Internationalized Eclipse Plug-In ."

Check out the "Recommended Eclipse reading list."

Browse all the Eclipse content on developerWorks.

New to Eclipse? Read the developerWorks article "Get started with Eclipse
Platform" to learn its origin and architecture, and how to extend Eclipse with
plug-ins.

Expand your Eclipse skills by checking out IBM developerWorks' Eclipse project
resources.

To listen to interesting interviews and discussions for software developers, check
out developerWorks podcasts.

Stay current with developerWorks' Technical events and webcasts.

Watch and learn about IBM and open source technologies and product functions
with the no-cost developerWorks On demand demos.

http://www.ibm.com/developerworks/library/os-eclipse-plugindev2/
http://www.osgi.org/
http://wiki.eclipse.org/index.php/Version_Numbering
http://wiki.eclipse.org/EE
http://www.eclipse.org/rcp
http://help.eclipse.org/help33/topic/org.eclipse.platform.doc.isv/reference/extension-points/index.html
http://www.ibm.com/developerworks/opensource/library/os-ecbug/
http://www.eclipse.org/articles/Article-Internationalization/how2I18n.html
http://www.eclipse.org/articles/Article-TVT/how2TestI18n.html
http://www.ibm.com/developerworks/library/os-ecl-read
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=eclipse
http://www.ibm.com/developerworks/opensource/library/os-eclipse-platform/
http://www.ibm.com/developerworks/opensource/top-projects/eclipse.html
http://www.ibm.com/developerworks/podcast/
http://www.ibm.com/developerworks/offers/techbriefings/
http://www.ibm.com/developerworks/offers/lp/demos/

10/13/09 9:40 AMPlug-in development 101, Part 1: The fundamentals

Page 16 of 17http://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev1/

Check out upcoming conferences, trade shows, webcasts, and other Events
around the world that are of interest to IBM open source developers.

Visit the developerWorks Open source zone for extensive how-to information,
tools, and project updates to help you develop with open source technologies
and use them with IBM's products.

Get products and technologies

Download an Eclipse distribution containing the Plug-in Development
Environment (PDE) from the Eclipse Foundation.

The first stop to make when seeking plug-ins is the Eclipse Foundation's project
list.

The second stop to make when seeking plug-ins is Eclipse Plug-in Central
(EPIC).

Check out the latest Eclipse technology downloads at IBM alphaWorks.

Download Eclipse Platform and other projects from the Eclipse Foundation.

Download IBM product evaluation versions, and get your hands on application
development tools and middleware products from DB2®, Lotus®, Rational®,
Tivoli®, and WebSphere®.

Innovate your next open source development project with IBM trial software,
available for download or on DVD.

Discuss

The Eclipse Platform newsgroups should be your first stop to discuss questions
regarding Eclipse. (Selecting this will launch your default Usenet news reader
application and open eclipse.platform.)

The Eclipse newsgroups has many resources for people interested in using and
extending Eclipse.

Participate in developerWorks blogs and get involved in the developerWorks
community.

About the author

Chris Aniszczyk is an Eclipse committer at IBM Lotus who works on OSGi-related
development. His primary focus these days is improving Eclipse's Plug-in
Development Environment (PDE) and spreading the Eclipse love inside of IBM's Lotus

http://www.ibm.com/developerworks/views/opensource/events.jsp
http://www.ibm.com/developerworks/opensource
http://www.eclipse.org/downloads/
http://www.eclipse.org/
http://www.eclipse.org/projects/listofprojects.php
http://www.eclipseplugincentral.com/
http://www.alphaworks.ibm.com/eclipse
http://www.alphaworks.ibm.com/
http://www.eclipse.org/downloads/
http://www.ibm.com/developerworks/downloads/
http://www.ibm.com/developerworks/downloads/
news://news.eclipse.org/eclipse.platform
http://www.eclipse.org/newsgroups/
http://www.ibm.com/developerworks/blogs

10/13/09 9:40 AMPlug-in development 101, Part 1: The fundamentals

Page 17 of 17http://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev1/

organization. He is an open source enthusiast at heart, specializing in open source
evangelism. He evangelizes about Eclipse in his blog, and he's honored to represent
the Eclipse committers on the Eclipse Foundation's board of directors. He's always
available to discuss open source and Eclipse over a frosty beverage.

Trademarks | My developerWorks terms and conditions

http://www.ibm.com/developerworks/ibm/trademarks/
https://www.ibm.com/developerworks/mydeveloperworks/terms/

