
10/13/09 9:43 AMPlug-in development 101, Part 2: Introducing rich-client applications

Page 1 of 17https://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev2/

Plug-in development 101, Part 2:
Introducing rich-client applications
Learn the basics about plug-in development and rich-client applications

Chris Aniszczyk, Software Engineer, IBM, Software Group

Summary: Plug-in development in Eclipse is somewhat of an art form. If you're
new to the concept of plug-ins, especially in the context of OSGi and Eclipse, it can
be a burden learning the myriad tools Eclipse has to help you write plug-ins. This
article will help you learn some basic plug-in development skills, with some best
practices sprinkled in for good measure.

Date: 01 Apr 2008
Level: Intermediate
Activity: 1878 views
Comments: 0 (Add comments)

 Average rating (based on 13 votes)

This "Plug-in development 101" series of articles is all about developing plug-ins. But
before we get started, we need to ensure that we have a proper environment in
which to develop plug-ins. The first step is to download an Eclipse distribution that
has the Plug-in Development Environment (PDE) in it from Eclipse.org. I recommend
downloading the latest version of Eclipse Classic. In this series, we will use a
milestone release of Eclipse V3.4 (M5). Once this done, you're ready to go. (See
Resources to learn where to find Eclipse and additional background information if you
are new to Eclipse.)

To make it easier to understand plug-in development, this article follows a workflow
detailed in Figure 1. In Part 1, we discuss the first five steps of the workflow. Here,
we cover the last two steps and focus on introducing rich-client applications.

Figure 1. Plug-in development workflow

https://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev2/#author1
https://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev2/#icomments
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=plug-in+development+101
https://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev2/#resources
http://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev1/

10/13/09 9:43 AMPlug-in development 101, Part 2: Introducing rich-client applications

Page 2 of 17https://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev2/

Building

Configuring build content is an important step on our plug-in development adventure.
In Eclipse, all plug-in development build-related configuration goes into the
build.properties file.

Figure 2. Build configuration (build.properties)

10/13/09 9:43 AMPlug-in development 101, Part 2: Introducing rich-client applications

Page 3 of 17https://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev2/

Automated builds?
Setting up an automated build for a plug-ins is outside the scope of this article, but
since it's such a frequent question, here's some background. The most common way
to set up automated builds is with the PDE Build component in the Eclipse SDK. The
downside to PDE Build is its complication, which beginners find daunting. A quick
way to see how to set up an automated build is reviewing the plug-ins and tools at
the Pluginbuilder Web site (see Resources).

Sample build-configuration content centers around the MANIFEST.MF, plugin.xml, and
icon files. It may also include plugin.properties for internationalization support or
artifacts like license files. It's important to notice the distinction of what is included in
a binary build vs. a source build. Typically, when you export a plug-in from Eclipse,
it's just a binary plug-in export that can be used by your friends in their Eclipse
installations. A Source Build should include the source from the plug-in you're
working on. You can elect to do a source build during a typical export operation.

Exporting

https://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev2/#resources

10/13/09 9:43 AMPlug-in development 101, Part 2: Introducing rich-client applications

Page 4 of 17https://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev2/

The final step in a typical plug-in developer's workflow involves exporting the plug-in
you've created. Eclipse's PDE makes this an easy process using a specialized export
wizard. To access this wizard (see Figure 3), simply click File > Export and select
Deployable Plug-ins and Fragments under the Plug-in Development category.

Figure 3. Export plug-in wizard

The first option to select within this wizard is what plug-ins we're interested in
exporting. In this case, we just want our simple HelloWorld plug-in. The next step is
to select a destination for our plug-in. We can opt to put the plug-in inside a ZIP file
or within a directory. The other options within this wizard include abilities to do plug-
in signing and bundling source with your plug-in. For now, ignore these and simply
click Finish on the wizard to export your plug-in (see Figure 4). Note that the
Overview page in the plug-in manifest editor provides an easy hyperlink to launch

10/13/09 9:43 AMPlug-in development 101, Part 2: Introducing rich-client applications

Page 5 of 17https://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev2/

the wizard.

Figure 4. Plug-in on disk

That's it! That's all it takes to get a plug-in from an Eclipse workspace to a
consumable form on a hard disk. Once in this form, plug-ins can be distributed easily
to colleagues and friends. This ends our focus on plug-in development workflow, but
now that we know the basics, we can start looking at what it takes to create a rich-
client application within Eclipse.

Rich Client Platform
Rich-client applications are enabled in Eclipse using the Rich Client Platform (RCP).
Traditionally, the Eclipse platform is designed to serve as an open tools platform.
However, it is architected so its components could be used to build just about any
client application. The minimal set of plug-ins needed to build a rich-client
application is collectively known as the Rich Client Platform. See Resources to learn
more.

Products

To create a rich-client application within Eclipse, we need to work with a concept
called product configurations. Product configurations are what PDE provides as a way
for plug-in developers to build rich-client applications. To understand product
configurations, we need to have a sample rich-client application to work with. We'll
create one by taking advantage of the PDE template mechanism we went over in
Part 1. Create a plug-in project named rcp and make sure to indicate that its a rich-
client application, then select the RCP Application with a view template (see Figure
5).

Figure 5. Rich-client application template

https://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev2/#resources
http://www.ibm.com/developerworks/library/os-eclipse-plugindev1/

10/13/09 9:43 AMPlug-in development 101, Part 2: Introducing rich-client applications

Page 6 of 17https://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev2/

The next step is to create a product configuration file to help assemble the rich-client
application we previously created. To create a new product configuration, right-click
on the plug-in project and select New > Product Configuration to launch the new
product configuration wizard (see Figure 6). Accept all the defaults, use rcp.product
for the name of your product configuration file and click Finish to launch the product
configuration editor. The next sections will go over the various pages of the product
configuration editor.

Figure 6. New product configuration wizard

10/13/09 9:43 AMPlug-in development 101, Part 2: Introducing rich-client applications

Page 7 of 17https://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev2/

Overview

Similar to the plug-in manifest editor, the first page presented within the product
configuration editor is the Overview tab (see Figure 7). It gives a quick synopsis of
the product configuration, convenient links to test and export products, and the
ability to select whether the product is based on plug-ins or features. To quickly test
applications, select the Launch an Eclipse application link within the Testing
section and see what the rich-client application looks like.

Figure 7. Overview

10/13/09 9:43 AMPlug-in development 101, Part 2: Introducing rich-client applications

Page 8 of 17https://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev2/

That's all there is to the Overview tab within the product configuration editor. If
you're interested in the basic operations you can do on product configurations, head
back to Overview.

It is also possible to launch your application from here. For example, click the
Launch an Eclipse application and you should see your application pop up (see
Figure 8).

10/13/09 9:43 AMPlug-in development 101, Part 2: Introducing rich-client applications

Page 9 of 17https://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev2/

Figure 8. Launching applications

Configuration

The Configuration tab contains the basic building blocks needed to run your product.
This includes information such as the artifacts needed to run your product. The first
section, Plug-ins and Fragments, simply lists the plug-ins and fragments needed to
run your product. As a helpful tip, there will be times when you're working on your
product and dependencies will be introduced. When this happens, it's always keen to
select the Add Required Plug-ins to calculate if anything needs to be added to
your product configuration.

The next section, Configuration File, represents an OSGi-specific artifact called the
config.ini file. About 99.9 percent of the time, you want to leave this setting alone
and have Eclipse generate the file. All this file contains really is what you have
specified in the previous plug-ins and fragments section, but in a special format
Eclipse can understand when launching.

Figure 9. Configuration

10/13/09 9:43 AMPlug-in development 101, Part 2: Introducing rich-client applications

Page 10 of 17https://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev2/

Launching

The Launching tab contains all the information that deals with launching your Eclipse-
based product. The Java Runtime Environment section allows you the convenience
of bundling platform-specific JREs. The Program Launcher section allows you to
customize the executable that launches the product. For example, it's common that
developers want something other than eclipse.exe for the name of their launcher
executables. On top of naming the launcher executable, you can also brand it using

10/13/09 9:43 AMPlug-in development 101, Part 2: Introducing rich-client applications

Page 11 of 17https://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev2/

platform-specific icons. The Launching Arguments section allows you to specify
platform-specific launch parameters for your product. This may be useful if you want
any special behavior on an operating system, such as Mac OS X.

Figure 10. Launching

Splash

The Splash tab allows you to optionally configure a splash screen for your product

10/13/09 9:43 AMPlug-in development 101, Part 2: Introducing rich-client applications

Page 12 of 17https://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev2/

(see Figure 11). For example, when you launch Eclipse, you get a simple splash
screen that says Eclipse and shows loading plug-in progress. By default, your
example RCP application came with a simple bitmap-based splash screen. However,
to demonstrate the interesting things you can do with your splash screen, we'll take
advantage of the login splash screen template (in the Customization section). Once
you select the log-in template, save your product configuration and launch your
application.

Figure 11. Splash

10/13/09 9:43 AMPlug-in development 101, Part 2: Introducing rich-client applications

Page 13 of 17https://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev2/

Notice the new splash screen with a login and password.

Figure 12. Custom splash screen

Branding

The Branding tab (see Figure 13) allows you to do three things: customize window
images, create a custom about dialog, and create an optional welcome page. Window
images are simply the images associated with your application shell windows. For
example, when you launch Eclipse, the title bar has a little 16x16 Eclipse icon. These
are the types of icons you can customize. Most software applications have some form
of an about dialog to list things like licenses, authorship, and version information.
The product configuration editor lets you reuse the existing Eclipse about dialog, but
customize it with your own images and information.

The welcome page is something you can create to aid your users in learning your
application. For example, to see the default Eclipse Welcome page, simply select the
Help > Welcome menu item. If you desire something similar for your application,
you can start the process in the Welcome Page section of the Branding tab. Since
creating a welcome page is outside the scope of this article, to learn more, please
consult Resources to discover more information about Eclipse user-assistance
technologies.

Figure 13. Branding

https://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev2/#resources

10/13/09 9:43 AMPlug-in development 101, Part 2: Introducing rich-client applications

Page 14 of 17https://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev2/

Conclusion

On the whole, this "Plug-in development 101" series' mission was to give an
introduction to the basics of plug-in development with some best practices sprinkled
in. We accomplished that in Part 1 by creating a sample plug-in and going through a
typical plug-in development workflow. In Part 2, we finished going through our plug-
in development workflow and created a rich-client application. Once the workflow is
mastered, it becomes much easier to develop plug-ins and Eclipse RCP-based

http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=plug-in+development+101
http://www.ibm.com/developerworks/library/os-eclipse-plugindev1/

10/13/09 9:43 AMPlug-in development 101, Part 2: Introducing rich-client applications

Page 15 of 17https://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev2/

applications.

Now, go forth and use your newly found knowledge to create plug-ins and Eclipse-
based applications.

Resources

Learn

Pluginbuilder.org helps automate the construction of Eclipse plug-ins.

The OSGi Alliance created the plug-in standard used by Eclipse.

Learn more about Eclipse Plug-in Versioning at the Eclipse Foundation wiki.

See the Eclipse EE guide at the Eclipse Foundation wiki.

To learn more about the Eclipse Rich Client Platform, visit Eclipse.org.

To learn more about the Eclipse SDK, see the Eclipse Foundation documentation
titled "Platform Extension Points."

Need help creating a welcome page for your RCP application? Read "Get to
know Eclipse User Assistance."

Need help debugging in Eclipse? Read "Debugging with the Eclipse Platform."

Good background information on internationalizing plug-ins can be found in the
Eclipse Foundation's articles "How to Internationalize your Eclipse Plug-In" and
"How to Test Your Internationalized Eclipse Plug-In."

Check out the "Recommended Eclipse reading list."

Browse all the Eclipse content on developerWorks.

New to Eclipse? Read the developerWorks article "Get started with Eclipse
Platform" to learn its origin and architecture, and how to extend Eclipse with
plug-ins.

Expand your Eclipse skills by checking out IBM developerWorks' Eclipse project
resources.

To listen to interesting interviews and discussions for software developers, check

http://www.pluginbuilder.org/
http://www.osgi.org/
http://wiki.eclipse.org/index.php/Version_Numbering
http://wiki.eclipse.org/EE
http://www.eclipse.org/rcp
http://help.eclipse.org/help33/topic/org.eclipse.platform.doc.isv/reference/extension-points/index.html
http://www.ibm.com/developerworks/opensource/library/os-eclipse-ua/
http://www.ibm.com/developerworks/opensource/library/os-ecbug/
http://www.eclipse.org/articles/Article-Internationalization/how2I18n.html
http://www.eclipse.org/articles/Article-TVT/how2TestI18n.html
http://www.ibm.com/developerworks/library/os-ecl-read
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=eclipse
http://www.ibm.com/developerworks/opensource/library/os-eclipse-platform/
http://www.ibm.com/developerworks/opensource/top-projects/eclipse.html

10/13/09 9:43 AMPlug-in development 101, Part 2: Introducing rich-client applications

Page 16 of 17https://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev2/

out developerWorks podcasts.

Stay current with developerWorks' Technical events and webcasts.

Watch and learn about IBM and open source technologies and product functions
with the no-cost developerWorks On demand demos.

Check out upcoming conferences, trade shows, webcasts, and other Events
around the world that are of interest to IBM open source developers.

Visit the developerWorks Open source zone for extensive how-to information,
tools, and project updates to help you develop with open source technologies
and use them with IBM's products.

Get products and technologies

Download an Eclipse distribution containing the Plug-in Development
Environment (PDE) from Eclipse.org.

The first stop to make when seeking plug-ins is the Eclipse Foundation's project
list.

The second stop to make when seeking plug-ins is Eclipse Plug-in Central
(EPIC).

Check out the latest Eclipse technology downloads at IBM alphaWorks.

Download Eclipse Platform and other projects from the Eclipse Foundation.

Download IBM product evaluation versions, and get your hands on application
development tools and middleware products from DB2®, Lotus®, Rational®,
Tivoli®, and WebSphere®.

Innovate your next open source development project with IBM trial software,
available for download or on DVD.

Discuss

The Eclipse Platform newsgroups should be your first stop to discuss questions
regarding Eclipse. (Selecting this will launch your default Usenet news reader
application and open eclipse.platform.)

The Eclipse newsgroups has many resources for people interested in using and

http://www.ibm.com/developerworks/podcast/
http://www.ibm.com/developerworks/offers/techbriefings/
http://www.ibm.com/developerworks/offers/lp/demos/
http://www.ibm.com/developerworks/views/opensource/events.jsp
http://www.ibm.com/developerworks/opensource
http://www.eclipse.org/downloads/
http://www.eclipse.org/
http://www.eclipse.org/projects/listofprojects.php
http://www.eclipseplugincentral.com/
http://www.alphaworks.ibm.com/eclipse
http://www.alphaworks.ibm.com/
http://www.eclipse.org/downloads/
http://www.ibm.com/developerworks/downloads/
http://www.ibm.com/developerworks/downloads/
news://news.eclipse.org/eclipse.platform
http://www.eclipse.org/newsgroups/

10/13/09 9:43 AMPlug-in development 101, Part 2: Introducing rich-client applications

Page 17 of 17https://www.ibm.com/developerworks/opensource/library/os-eclipse-plugindev2/

extending Eclipse.

Participate in developerWorks blogs and get involved in the developerWorks
community.

About the author

Chris Aniszczyk is an Eclipse committer at IBM Lotus who works on OSGi-related
development. His primary focus these days is improving Eclipse's Plug-in
Development Environment (PDE) and spreading the Eclipse love inside of IBM's Lotus
organization. He is an open source enthusiast at heart, specializing in open source
evangelism. He evangelizes about Eclipse in his blog, and he's honored to represent
the Eclipse committers on the Eclipse Foundation's board of directors. He's always
available to discuss open source and Eclipse over a frosty beverage.

Trademarks | My developerWorks terms and conditions

http://www.ibm.com/developerworks/blogs
http://www.ibm.com/developerworks/ibm/trademarks/
https://www.ibm.com/developerworks/mydeveloperworks/terms/

