
10/13/09 11:51 AMRich Ajax Platform, Part 2: Developing applications

Page 1 of 15http://www.ibm.com/developerworks/opensource/library/os-eclipse-richajax2/

Rich Ajax Platform, Part 2: Developing
applications
Web 2.0, the Eclipse way

Chris Aniszczyk, Software Engineer, IBM, Software Group
Benjamin Muskalla (bmuskalla@innoopract.com), Software Engineer, Innoopract
Informationssysteme GmbH

Summary: The Rich Client Platform (RCP) is a powerful platform technology to build
enterprise applications. With the help of Rich Ajax Platform (RAP), it gets more
interesting because you can reuse your existing code base and development skills for
a Web application, as you saw in Part 1 of this "Rich Client Platform" series.
Additionally, RAP has some noteworthy features, making Web development even
more attractive. The article goes beyond the Hello World example, and explains some
key concepts and how to use advanced features provided by RAP.

Date: 11 Dec 2007
Activity: 1206 views
Comments: 0 (Add comments)

 Average rating

Before diving into new features, we would like to provide a little overview of how RAP
is structured and why this is important. After that, we will go over to some
interesting topics like background jobs, user-interface (UI) customization, and we'll
tell you a bit about more advanced topics, such as custom widgets and themes.
Return to Part 1 or see Resources if this discussion is beyond your present grasp of
RAP.

The architecture of RAP

To develop applications based on RAP efficiently, there are cases where you need to
know how it works. We don't want to bore you with too much about the internal
mechanisms, but we need to explain some basic concepts to aid your development
with RAP. The following illustration is a good starting point into how RAP is organized
in contrast to RCP.

Figure 1. RAP in contrast to RCP

http://www.ibm.com/developerworks/opensource/library/os-eclipse-richajax2/#author1
http://www.ibm.com/developerworks/opensource/library/os-eclipse-richajax2/#author2
mailto:bmuskalla@innoopract.com?subject=Developing%20applications
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=rich+ajax+platform,
http://www.ibm.com/developerworks/opensource/library/os-eclipse-richajax2/#icomments
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
http://www.ibm.com/developerworks/opensource/library/os-eclipse-richajax1/
http://www.ibm.com/developerworks/opensource/library/os-eclipse-richajax2/#resources

10/13/09 11:51 AMRich Ajax Platform, Part 2: Developing applications

Page 2 of 15http://www.ibm.com/developerworks/opensource/library/os-eclipse-richajax2/

As you can see, RAP is split into two parts. On the one side, we have the server-side
piece that runs on top of Equinox (the Eclipse implementation of the OSGi
specification). And on the other side, we have the client piece, which is what you see
in a browser. Both sides exchange events, which the UI updates appropriately. This
means that most of the code is being executed on the server, and the thin-client side
is only updated when needed. This has the advantage of running clean Java™
applications without having the need to install the application itself on the client
machine.

RAP is not RCP

Structuring your application to live in both worlds
Even though RAP isn't RCP, it's possible to share a lot of code between a RAP and
RCP application. To do this, we recommend having one plug-in that serves as a base
plug-in that contains UI code that can be used in RAP and RCP. To accomplish this,
we recommend you use Import-Package in your MANIFEST.MF to specify
dependencies. This will allow your base plug-in to use packages whether they come
from RAP or RCP. You aren't coupling yourself to a specific implementation. After you
have your base plug-in set up, we recommend two more plug-ins, one for RAP-
specific code, the other for RCP-specific code. Finally, having two workspaces, where
one has a target platform set up for RAP and the other target platform for RCP. In
the future, we hope this becomes easier as the tooling evolves to accommodate
application developers writing code to run in RAP and RCP.

The provocative title of this section shouldn't scare you, but it is a fact you need to
be aware of. As we saw in Part 1, the migration of an RCP application to a Web-
enabled RAP counterpart is straightforward. While developing RCP applications, it is
generally the case that only one user will work with the application at a time. In
contrast, a RAP application that runs on a server will be used by several (if not
thousands of) users at the same time. This leads to rethinking some concepts used in
RAP application development. One interesting aspect is the singularity of classes

http://www.ibm.com/developerworks/opensource/library/os-eclipse-richajax1/

10/13/09 11:51 AMRich Ajax Platform, Part 2: Developing applications

Page 3 of 15http://www.ibm.com/developerworks/opensource/library/os-eclipse-richajax2/

implementing the singleton pattern. A singleton is unique in the so-called "application
scope." We distinguish between several scopes in a RAP application:

Application scope
The application scope is the most far-reaching scope in that it's available for
every user. A singleton is unique for the whole application and, therefore, lives
in the application scope. This means that all users of the application are using
the same instance of the singleton. This could be a good thing, but not always if
the instance holds some user-specific information.

Session scope
The session scope is bound to the current user session available for the current
user only. To implement a singleton bound only to a specific session, you can
use the class SessionSingletonBase provided by RAP. By extending this class and
overriding its getInstance method, the class behaves like a singleton, but is
available session-wide only.

Request scope
The request scope is the smallest of the three. It's available only when a request
is being processed. Most of the time, this scope isn't really relevant for the
normal developer (except when you want to take part of RAP's life-cycle
concept).

Background jobs

One of the most exciting features of RAP is support for the Eclipse Jobs framework.
With the help of jobs, you can run long-running tasks in the background while the UI
is still responsive. To see how it works, we will extend our mail application from Part
1, with a new action that schedules a job (see Listing 1).

Listing 1. Adding an action (ApplicationActionBarAdvisor.java)

....
private Action progressAction;
...
protected void makeActions(final IWorkbenchWindow window) {
 ...
 progressAction = new SampleProgressAction();
 progressAction.setText("Count me!");
 progressAction.setId("progress.action");
 register(progressAction);

}
...
protected void fillCoolBar(ICoolBarManager coolBar) {
...

http://en.wikipedia.org/wiki/Singleton_pattern

10/13/09 11:51 AMRich Ajax Platform, Part 2: Developing applications

Page 4 of 15http://www.ibm.com/developerworks/opensource/library/os-eclipse-richajax2/

 toolbar.add(progressAction);
}

In addition to the jobs API, RAP offers a well-known UI for handling jobs, as we will
see later. To activate this feature in the workbench, we tell Eclipse to show the
progress indicator (see Listing 2).

Listing 2. Enabling the progress indicator
(ApplicationWorkbenchWindowAdvisor.java)

...
public void preWindowOpen() {
...
 configurer.setShowProgressIndicator(true);
}
...

The most interesting part comes next: the job. Our example is a simple
implementation (see Listing 3), which just increases a variable to a specific amount
and waits after every step so we can see something happening in the UI.

Listing 3. The job itself (SampleProgressAction.java)

package rap.mail;

import org.eclipse.core.runtime.IProgressMonitor;
import org.eclipse.core.runtime.IStatus;
import org.eclipse.core.runtime.Status;
import org.eclipse.core.runtime.jobs.Job;
import org.eclipse.jface.action.Action;

public class SampleProgressAction extends Action {

 private static final int TASK_AMOUNT = 100;

 public void run() {
 Job job = new Job("Long Running Action:") {
 protected IStatus run(final IProgressMonitor monitor) {
 monitor.beginTask("Number counting", TASK_AMOUNT);
 for (int i = 0; i < TASK_AMOUNT; i++) {
 if (monitor.isCanceled()) {
 monitor.done();
 return Status.CANCEL_STATUS;

10/13/09 11:51 AMRich Ajax Platform, Part 2: Developing applications

Page 5 of 15http://www.ibm.com/developerworks/opensource/library/os-eclipse-richajax2/

 }
 int done = i % TASK_AMOUNT;
 monitor.subTask("work done: (" + done + "%)");
 monitor.worked(1);
 try {
 Thread.sleep(200);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 monitor.done();
 return Status.OK_STATUS;
 }
 };
 job.setName(job.getName() + " " + job.hashCode());
 job.setUser(true);
 job.schedule();
 }
}

After starting the application and clicking the action, a new dialog appears to show us
the progress of the currently running job. If we don't want to wait for the job to
finish, we can hide it by clicking Run in background. Furthermore, it is possible to
open the Progress View by clicking on the progress icon in the status bar. If there
are more jobs running at the same time, we can easily see them in the Progress
View.

Figure 2. Background jobs

10/13/09 11:51 AMRich Ajax Platform, Part 2: Developing applications

Page 6 of 15http://www.ibm.com/developerworks/opensource/library/os-eclipse-richajax2/

Branding

For most RCP-based and RAP-based applications, there is a need to brand them to
your liking. Branding means to modify the presentation of your application to fit your
intentions, like conforming to an existing corporate branding. If you ever worked on
an RCP application, there's a concept of .product files to help brand your application.
Since RAP targets another platform (the Web), we need to do some additional work
to customize our application.

Figure 3. Manifest Editor with sample branding

10/13/09 11:51 AMRich Ajax Platform, Part 2: Developing applications

Page 7 of 15http://www.ibm.com/developerworks/opensource/library/os-eclipse-richajax2/

As you can see, there are several ways to customize an RAP application.

Attribute Description

servletName

The servletName defines the name of the servlet the application
will be available to the outer world. This means the URL of your
application will be shown as
http://<host><port>/<servletName>

defaultEntrypointId
As you normally have one entry point that should be loaded by
default when accessing the application without the startup
parameter, you can define defaultEntrypointId.

themeId

The theme to be used for this branding can be specified here.
You need to provide an ID for the theme defined by an
extension of org.eclipse.rap.ui.themes. Without the themeId, the
RAP standard theme will be used.

title
The title of the page — the part that will be shown as window
title in most browsers or the title of the tab — can be
customized with this attribute.

favicon The favicon is the icon shown in the address bar of the browser.
This has to be a valid .ico file to be displayed in the browser.

body

If you have the need for some custom (X)HTML markup in the
RAP index page, you can register a valid (X)HTML file with the
body attribute that will be included in the body tag of the
generated index page.

exitConfirmation
If not empty, the string in exitConfirmation will be shown to the
user if he wants to leave the RAP application. This is useful to
prevent users to accidentally close the browser window/tab.

After restarting the application with a new branding, we can see the result.

http://en.wikipedia.org/wiki/ICO_%28icon_image_file_format%29

10/13/09 11:51 AMRich Ajax Platform, Part 2: Developing applications

Page 8 of 15http://www.ibm.com/developerworks/opensource/library/os-eclipse-richajax2/

Figure 4. Application with branding

Themes

The theme of a RAP application defines the look and feel your application users will
have. Don't look at it like the theme support in the RCP workbench, but more like the
support of your favorite operation system to define the look of windows, buttons,
etc. In general, RAP theming allows you to define:

Custom colors
Custom fonts
Custom borders
Custom dimensions and box dimensions (paddings etc.)
Custom images and icons

However, which aspects that are actually customizable depends on the particular
control you're theming. Some controls allow for more flexibility, while others are
more hard-wired. As an example, the difference between the default look and feel,

10/13/09 11:51 AMRich Ajax Platform, Part 2: Developing applications

Page 9 of 15http://www.ibm.com/developerworks/opensource/library/os-eclipse-richajax2/

and a custom theme could look like Figure 5.

Figure 5. Custom theme in action

Creating a theme

In RAP, theme files are simple Java property files. A template named theme-
template.properties can be found in the src/ directory of the RAP org.eclipse.rap.rwt
plug-in. You only have to specify those properties that are relevant for your
customization (undefined properties stay at their default value). See below for the
syntax of the property values. The following is an example for a simple theme file.

Listing 4. A simple theme file

Alternative Demo Theme
#

Frame border for group boxes
default: 1 solid #aca899
group.frame.border: 2 dotted #56a0ea

Font for title bar of Shells
default: bold 11 "Segoe UI", Corbel, Calibri, Tahoma, "Lucida Sans Unicode", sans-serif
shell.title.font: bold 15 "Trebuchet MS", Arial, Helvetica, sans-serif

Height of the title bar of Shells
default: 18
shell.title.height: 25

...

Registering the theme

To make your theme available, you have to register it with the extension point
org.eclipse.rap.swt.themes. In the plugin.xml of your application project, add an

10/13/09 11:51 AMRich Ajax Platform, Part 2: Developing applications

Page 10 of 15http://www.ibm.com/developerworks/opensource/library/os-eclipse-richajax2/

extension like Listing 5.

Listing 5. Making a theme available

<extension
 point="org.eclipse.rap.swt.themes">
 <theme
 id="org.eclipse.rap.dw.demotheme"
 name="Alternative Demo Theme"
 file="theme1/theme.properties" />
</extension>

Activating the theme

To activate the theme, we have to specify the themeId in our branding. We set it to
the ID of your newly created theme: org.eclipse.rap.demo.alttheme. After restarting
the application, we can proudly see our application in a new style.

Figure 6. Custom theme in action

Custom widgets

10/13/09 11:51 AMRich Ajax Platform, Part 2: Developing applications

Page 11 of 15http://www.ibm.com/developerworks/opensource/library/os-eclipse-richajax2/

Structuring your application to live in both worlds
The Google Web Toolkit and RAP are similar in that they both allow you to use Java
technology to code Rich Internet Applications. The big differences are that GWT is
running on the client vs. RAP, which is mainly running on the server. Since RAP is
running on the server, it allows you to access the full Java API and make use of the
famous Eclipse plug-in model via OSGi. Another way to think about this is in Eclipse
terms, GWT is like a stand-alone SWT application (just a widget toolkit) where RAP
enabled an RCP-style approach for Web applications.

First things first: There are two types of custom widgets in RAP. You can develop
widgets by combining existing widgets to form a new one, or you can develop real
custom widgets, which are also known as owner-drawn widgets. When talking about
a compound widget, there is no difference to SWT (RCP) and the server-side (RAP).
Most of the time, you should be able to just reuse existing compound widgets in a
RAP application.

A more complex case is to create a real custom widget. When developing widgets
with RAP, you have to be aware that we have two different run times: the server-
side and the client-side implementation. On the server, the widget is the facade with
public API consumed by the users of your custom widget. On the client, the real
implementation is done with JavaScript. The trick is in bridging the client and server
parts. RAP has an internal concept known as a life cycle, where every widget is taken
into account. The life cycle is responsible for the initialization and exchange of data
between the client and server of the widget. The implementation of custom widgets
is a bit beyond the scope of this article, and we recommend reading more about
custom widgets in the RAP help documentation (see Resources). Just to get an idea
of what's possible, Figure 7 is a screenshot of Google Maps encapsulated in an SWT
widget, which can be accessed like every other widget.

Figure 7. Google Maps RAP widget

http://code.google.com/webtoolkit/
http://www.ibm.com/developerworks/opensource/library/os-eclipse-richajax2/#resources

10/13/09 11:51 AMRich Ajax Platform, Part 2: Developing applications

Page 12 of 15http://www.ibm.com/developerworks/opensource/library/os-eclipse-richajax2/

Conclusion

In Part 1, we saw how easy it is to turn existing RCP applications into real Web
applications. Here, we see that RAP is an exciting technology that offers many
customizations for Web development. By using the power of the Rich Client Platform
(RCP), Equinox on the server side and the Web browser, RAP enables everyone to
run applications with no configuration. Furthermore, RAP has the interesting trait of
allowing Eclipse developers to reuse existing skills and world-class tools to create
Web applications. In the end, we see RAP embracing the best of both desktop and
Web browser worlds.

Download

Description Name Size Download method
Sample code os-eclipse-richajax2-mail-project.zip 38KB HTTP

Information about download methods

Resources

Learn

Start with "Rich Ajax Platform, Part 1: An introduction" for an introduction to

http://www.ibm.com/developerworks/opensource/library/os-eclipse-richajax1/
http://www.ibm.com/developerworks/apps/download/index.jsp?contentid=273788&filename=os-eclipse-richajax2-mail-project.zip&method=http&locale=worldwide
http://www.ibm.com/developerworks/library/whichmethod.html
http://www.ibm.com/developerworks/opensource/library/os-eclipse-richajax1/

10/13/09 11:51 AMRich Ajax Platform, Part 2: Developing applications

Page 13 of 15http://www.ibm.com/developerworks/opensource/library/os-eclipse-richajax2/

RAP, how to set up a RAP development environment, and some demos and
examples.

Learn more about and download Rich Ajax Platform (RAP).

Check out the Eclipse Foundation's RAP wiki to learn about new features and
advanced use cases.

See the Eclipse Foundation's RAP Theming wiki to learn more about themes.

Read the RAP project official help documentation to learn more about RAP.

See Eclipse Foundation's RAP custom widget help documentation to learn more
about building a custom widget.

Check out the Eclipse Corner for more information about the Eclipse Jobs API.

Browse all the Eclipse content on developerWorks.

New to Eclipse? Read the developerWorks article "Get started with Eclipse
Platform" to learn its origin and architecture, and how to extend Eclipse with
plug-ins.

Expand your Eclipse skills by checking out IBM developerWorks' Eclipse project
resources.

To listen to interesting interviews and discussions for software developers, check
out check out developerWorks podcasts.

For an introduction to the Eclipse platform, see "Getting started with the Eclipse
Platform."

Stay current with developerWorks' Technical events and webcasts.

Watch and learn about IBM and open source technologies and product functions
with the no-cost developerWorks On demand demos.

Check out upcoming conferences, trade shows, webcasts, and other Events
around the world that are of interest to IBM open source developers.

Visit the developerWorks Open source zone for extensive how-to information,
tools, and project updates to help you develop with open source technologies
and use them with IBM's products.

http://www.eclipse.org/rap
http://wiki.eclipse.org/index.php/RAP
http://wiki.eclipse.org/RAP_Theming
http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.rap.help/help/html/intro.html
http://help.eclipse.org/help33/topic/org.eclipse.rap.help/help/html/advanced/custom-widget.html
http://www.eclipse.org/articles/
http://www.eclipse.org/articles/Article-Concurrency/jobs-api.html
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=eclipse
http://www.ibm.com/developerworks/opensource/library/os-eclipse-platform/
http://www.ibm.com/developerworks/opensource/top-projects/eclipse.html
http://www.ibm.com/developerworks/podcast/
http://www.ibm.com/developerworks/opensource/library/os-ecov/
http://www.ibm.com/developerworks/offers/techbriefings/
http://www.ibm.com/developerworks/offers/lp/demos/
http://www.ibm.com/developerworks/views/opensource/events.jsp
http://www.ibm.com/developerworks/opensource

10/13/09 11:51 AMRich Ajax Platform, Part 2: Developing applications

Page 14 of 15http://www.ibm.com/developerworks/opensource/library/os-eclipse-richajax2/

Get products and technologies

Download IBM product evaluation versions, and get your hands on application
development tools and middleware products from DB2®, Lotus®, Rational®,
Tivoli®, and WebSphere®.

Innovate your next open source development project with IBM trial software,
available for download or on DVD.

Discuss

The Eclipse Platform newsgroups should be your first stop to discuss questions
regarding Eclipse. (Selecting this will launch your default Usenet news reader
application and open eclipse.platform.)

The Eclipse newsgroups has many resources for people interested in using and
extending Eclipse.

Participate in developerWorks blogs and get involved in the developerWorks
community.

About the authors

Chris Aniszczyk is an Eclipse committer at IBM Lotus who works on OSGi-related
development. His primary focus these days is improving Eclipse's Plug-in
Development Environment (PDE) and spreading the Eclipse love inside of IBM's Lotus
organization. He is an open source enthusiast at heart, specializing in open source
evangelism. He evangelizes about Eclipse in his blog, and he's honored to represent
the Eclipse committers on the Eclipse Foundation's board of directors. He's always
available to discuss open source and Eclipse over a frosty beverage.

Benjamin Muskalla works as a software developer and consultant at Innoopract
Informationssysteme in Karlsruhe. He is a committer on the Rich Ajax Platform (RAP)

http://www.ibm.com/developerworks/downloads/
http://www.ibm.com/developerworks/downloads/
news://news.eclipse.org/eclipse.platform
http://www.eclipse.org/newsgroups/
http://www.ibm.com/developerworks/blogs

10/13/09 11:51 AMRich Ajax Platform, Part 2: Developing applications

Page 15 of 15http://www.ibm.com/developerworks/opensource/library/os-eclipse-richajax2/

project, mostly responsible for the workbench implementation. He is also an active
contributor to the Eclipse Platform.

Trademarks | My developerWorks terms and conditions

http://www.ibm.com/developerworks/ibm/trademarks/
https://www.ibm.com/developerworks/mydeveloperworks/terms/

