
Volume 1 | Number 1
Winter 2006

A Publication

www.eclipsereview.com

8Can’t Miss Eclipse
Tips & Tricks

Better Coding With
Eclipse Modeling
Framework

Create Web Apps
Faster With WTP

Unit Testing:
More Than A Fantasy
Unit Testing:
More Than A Fantasy

http://www.bzmedia.com
http://www.eclipsereview.com

Sybase WorkSpace, a unified application development environment, is the first designed to bridge the gap between the vision of a

service-oriented architecture (SOA) and the reality of what traditional development tools can deliver. Sybase WorkSpace combines

modeling, data management, services assembly and orchestration, Java™ development and mobilization in a single tool. Designed

to support the principles of service-oriented development of applications (SODA), Sybase WorkSpace enables developers to quickly

build and deliver many kinds of applications: from event- and data-driven applications to web-based, composite, and mobile

applications. Sybase WorkSpace is built upon the Eclipse open source framework, making it easier and faster for developers to

build complex applications that leverage heterogeneous infrastructures.

Get Sybase WorkSpace and start building tomorrow’s applications today.

For more information and to download white papers, visit www.sybase.com/workspace

D

Copyright © 2006 Sybase, Inc. All rights reserved. All product and company names are trademarks of their respective owners.

Sybase® WorkSpace =
Model-Driven Design + Services-Oriented
Development + Multi-Channel Deployment on Eclipse

http://www.sybase.com/workspace

DATABASE DEVELOPMENT:

• Visually create, edit and debug database objects

• Explore data servers throughout the enterprise

• Expose database procedures as services quickly and easily

ENTERPRISE MODELING:

• Manage and analyze requirements and changes

• Reverse engineer models from existing assets

• Model database schemas, EJBs, services and processes

SERVICE-ORIENTED DEVELOPMENT:

• Discover components throughout the enterprise

• Create services from Java components, rules, automated
process and messages

• Visually assemble composite applications

MOBILE DEVELOPMENT:

• Instantly mobilize database procedures, applications and services

• Manage page flow and applications

• Support offline and online access

KEY BENEFITS:

Reduces the complexity of combining existing and services-oriented applications. Designed to support the principles of SODA,
which simplifies the challenge of turning silos of data and business logic into responsive flows of information.

Improves productivity with mixed-mode development in a single tool. Supports a real-world mix of development styles including
Rapid Application Development (RAD), Architected Rapid Application Development (ARAD), and Model-Driven Development (MDD).

Improves business agility through faster, more flexible development. Enables developers to focus on higher-level business process
flows that leverage existing data and components in responding more quickly to business requirements.

Reduces errors and time spent on mundane tasks. Combines powerful productivity features present in graphical development styles
while automating more of the development process.

Reduces the cost of software maintenance through better design discipline. Model-driven development ensures consistency, fewer
one-off projects, and better alignment with business requirements.

Quickly mobilizes information; extends Java to mobile development. Enables codeless mobilization of all kinds of enterprise applications
and services, allowing use of Java and J2EE as the programming platform as well as occasionally connected service invocation.

Model. Design. Develop. Deliver. All in one environment.
Sybase WorkSpace.

Sybase Infrastructure Products

Eclipse

Common Frameworks

Presentation

Mobile Portal Web

Services

Creation Orchestration

Data Management

SP SQL Events

Enterprise Modeling

Object Business Process Data Information Liquidity

Requirements Analysis

De
ve

lo
p

De
pl

oy

De
si

gn
Te

st

www.sybase.com/workspace

W

http://www.sybase.com/workspace

http://www.instantiations.com

16 Better Software the Eclipse
Way: Using the TPTP Test Tools
Barry Burd explains how to start Java
unit testing using Eclipse and the JUnit API.

25 Develop Web Applications
FASTER with WTP
Tim Wagner shows how the Web Tools Project
works today, and where it’s going tomorrow.

31 8 Can’t-Miss Tips for
Using Eclipse
Dwight Deugo teaches how to save time and effort with everyday tasks.

37 A Grand Tour of the Eclipse Modeling Framework
Chris Aniszczyk and Borna Safabakhsh embark on a voyage of
discovery around EMF’s components and code-generation tooling.

Editorial Director
Alan Zeichick
alan@bzmedia.com
+1-650-359-4763

Executive Editor
George Walsh
+1-415-731-3843
gwalsh@bzmedia.com

Art Director
LuAnn T. Palazzo
lpalazzo@bzmedia.com

Publisher
Ted Bahr
+1-631-421-4158 x101
ted@bzmedia.com

Associate Publisher
Charlie Shively
+1-508-893-0736
cshively@bzmedia.com

Northeast Sales Manager
David Lyman
+1-978-465-2351
dlyman@bzmedia.com

Southeast Sales Manager
Jonathan Sawyer
+1-603-924-4489
jsawyer@bzmedia.com

Northwest Sales Manager
Paula Miller
+1-925-831-3803
pmiller@bzmedia.com

Southwest Sales Manager
Robin Nakamura
+1-408-445-8154
rnakamura@bzmedia.com

Ad Traffic Manager
Phyllis Oakes
+1-631-421-4158 x115
poakes@bzmedia.com

Director of Circulation
Agnes Vanek
+1-631-421-4158 x111
avanek@bzmedia.com

Director of Events
Donna Esposito
+1-415-785-3419
desposito@bzmedia.com

Director of Editorial Operations
David Rubinstein
drubinstein@bzmedia.com

Office Manager/Marketing
Cathy Zimmermann
czimmermann@bzmedia.com

Article Reprints
Lisa Abelson & Co.
+1-516-379-7097
labelson@optonline.net

Customer Service/Subscriptions
service@bzmedia.com

BZ Media is an Associate
Member of the Eclipse
Foundation, www.eclipse.org

Eclipse Review is published 4 times a year by BZ Media LLC, 7 High Street, Suite 407, Huntington, NY 11743. Periodicals privileges pending at Huntington, NY and additional offices.
POSTMASTER: Send address changes to BZ Media, 7 High Street, Suite 407, Huntington, NY 11743. Ride along is included.

Copyright © 2006 BZ Media LLC. All rights reserved. Eclipse Review is a trademark of BZ Media LLC. Eclipse is a trademark of The Eclipse Foundation.

DEPARTMENTS
7 Context

Welcome to the premiere issue
of BZ Media’s Eclipse Review.

9 Launchpad
The latest tools, technologies
and plug-ins for all Eclipse users.

11 Shoptalk
How TripConnect uses Eclipse
to fly first class in the travel biz.

14 Projects
The Graphical Editing Framework
is vital to building Eclipse GUIs.

42 Perspective
Why the Eclipse Foundation is an
ecosystem, not just a community.

V1 | N1 | WINTER 2006

BZ Media LLC | 7 High Street, Suite 407 | Huntington, NY 11743 | +1-631-421-4158 | fax +1-631-421-4045 | www.bzmedia.com | info@bzmedia.com
President | Ted Bahr Executive Vice President | Alan Zeichick

Cover Illustration: “Touching
Cyberspace,” by Mark Frost

“Eclipse makes

the programming

experience enjoyable

without being

cumbersome.”

—Isaac Sacolick,

COO, TripConnect

FEATURES

http://www.eclipse.org
http://www.bzmedia.com

After the code compiled, you test-
ed it—not with a test tool, but by
running it and seeing where it broke.

If you used tools beyond the text
editor, compiler and linker, they were
simple ones, like lint, a Unix tool that
checked for syntax errors, or make,
which automated the build process.

The universe began changing with
the introduction of the first integrated
development environment for the
general developer audience. Borland’s
Turbo Pascal inspired tool makers,
initially for DOS and Windows, but
later across the board. We can see the
heirs of Turbo Pascal today, in
Borland’s Delphi and JBuilder,
Microsoft’s Visual Studio, Apple’s
Xcode, Sun’s NetBeans—and of
course, Eclipse.

What makes Eclipse special, what
makes it unique, isn’t just the excel-
lent and solid technology. Eclipse suc-
ceeds because it’s more than bits: It’s
a vibrant community of strategic
developers, plug-in providers and
committers who are devoting time
and resources to support and enhance
the ecosystem.

Unlike many other open-source
collaborations, Eclipse is driven by
for-profit businesses, for the most
part, who see a vital need for this
software, not just for themselves, but

for their customers. These companies
are motivated to work together, in a
vendor-neutral environment, creating
a toolchain that they can use internal-
ly as well as leverage in their own
product offerings.

Enlightened self-interest is a beau-
tiful thing. It ensures that Eclipse will
continue to advance and evolve, not
only improving its core functionality,
but also expanding into new areas. It
also means that integration issues,
which so often plague developer tool-
chains, will be addressed, because
the companies building the ecosystem
simply can’t afford to have problems
in that area.

That’s why we’ve seen good
results in bringing together such a
huge array of Eclipse top-level proj-
ects, from BIRT and RPC, to newer
efforts like the Data Tools Platform
and AJAX Technology Framework.

Bottom line: We all win.

THANKS, MIKE AND IAN!
Eclipse Review is brought to you by
BZ Media, which you may know as
the publisher of SD Times
(www.sdtimes.com) and Software
Test & Performance Magazine
(www.stpmag.com).

Our business, and our passion, is
serving the developer community, not

only with our publications, newsletters
and Web sites, but also through tech-
nical conferences like the Software Test
& Performance Conference (www.
stpcon.com), Software Security Summit
(www.s-3con.com) and EclipseWorld
2006 (www.eclipseworld.net), coming
up Sept. 6-8 in Cambridge, Mass., right
across the river from Boston. I hope to
see you there; we’re assembling a great
technical program for this year’s event.

Eclipse Review will be published
quarterly this year, both in a printed
magazine and as a downloadable dig-
ital edition (in PDF format) on
www.eclipsereview.com.

At that same Web site, wou can
sign up for a free subscription, either
to the print edition (U.S. only) or to
have the digital edition e-mailed to
you (U.S. and worldwide).

I would like to thank the Eclipse
Foundation for supporting the launch
of Eclipse Review. Mike Milinkovich,
the executive director, and Ian Skerrett,
the director of marketing, have offered
incredibly valuable advice and guid-
ance. It’s always a pleasure working
with them, and with the members of
the Eclipse Foundation, as we continue
to grow Eclipse Review and
EclipseWorld to better serve the needs
of the community.

Finally: Eclipse Review is for you.
Our goal is to help you develop better
software using Eclipse-based tools
and technologies. Tell us how you use
Eclipse, the benefits you’ve seen, the
improvements you’ve made, the chal-
lenges you face. Tell us how we can
help you be more successful. Write
me at alan@bzmedia.com.

—Alan Zeichick, Editorial Director

Welcome to the First
Issue of Eclipse Review

The tools and techniques of software development have
come a long way since I wrote source code using XEDIT

on an IBM S/370 mainframe in the late 1970s. If your lineage as a
programmer goes back a few decades or longer, you remember the
era of discrete tools: you used an editor to create source files, and
then ran them through a compiler and linker. You studied the log
files or viewed command-line warnings.

Winter 2006 www.eclipsereview.com | 7

CONTEXT
From The Editors of Eclipse Review

http://www.sdtimes.com
http://www.stpmag.com
http://www.stpcon.com
http://www.s-3con.com
http://www.eclipseworld.net
http://www.eclipsereview.com
mailto:alan@bzmedia.com

EclipseWorld™ is a trademark of BZ Media LLC.
Eclipse™ is a trademark of Eclipse Foundation Inc. www.eclipseworld.net

EclipseWorld is brought to you by:

Boston, MA
September 6-8

EclipseWorld is for enterprise developers,
architects and development managers who
want to take their company’s applications
to a higher level!

Cambridge Hyatt Regency

Boston, MA
September 6-8

For sponsorship or exhibiting information,
contact Donna Esposito at 415-785-3419
or desposito@bzmedia.com

Save the Date!

BZ Media is a member of
the Eclipse Foundation.

ERSpring 3/2/06 11:18 AM Page 1

http://www.eclipseworld.net

Winter 2006 www.eclipsereview.com | 9

MyEclipse Takes On
AJAX, Adds Web Tools

Genuitec’s tool suite for enterprise got
smarter with its 4.1.1 release in early
March. This maintenance upgrade of
MyEclipse Enterprise Workbench
builds on the late January introduc-
tion of version 4.1’s new Web 2.0
Workbench for Asynchronous
JavaScript and XML (AJAX),
improved modeling using the UML
Sequence Diagram, improved visual
Web development, a new image edi-
tor and Spring/Hibernate integration.
The maintenance release adds more
new features, including source view-
ing capability for the Web 2.0
Browser; a new JavaScript Console
view added to Web 2.0 Workbench
and new customizations available in
the Hibernate Reverse Engineering
Mapping wizard. MyEclipse
Enterprise Workbench, which is deliv-
ered as an Eclipse 3.1 plug-in, costs
US$31.75 per year for the Standard
Edition, and $52.95 for the
Professional Edition (which adds
UML modeling and an Oracle data-
base connector).
URL www.myeclipseide.com

IBM Multimodal Tools For
XHTML + Voice Applications

X+V, or XHTML+Voice, is a new
XML-based markup language, submit-
ted to the W3C, that is being used to
build so-called multimodal applica-
tions—that is, those which have both
visual and speech/voice user inter-
faces. These multimodal apps allow
for user interaction from more than
just a Web browser; they can also be
used with devices such as smart-
phones and allow voice recognition
over a standard wireline phone. If
you’re working with those technolo-
gies, download Multimodal Tools
Project from IBM’s alphaWorks Web
site. MTP is a set of plug-ins that
works with Eclipse 3.1, Web Tools

Platform and the Eclipse Voice Tools
Project. The plug-ins include an X+V
editor and a multimodal browser
launching configuration. The editor
supports color highlighting, content
assistance and content validation for
the new language, and the application
grammar can be created using a Voice
Tool Project's wizard. Once a devel-
oper has finished developing the
application, the multimodal browser
can be launched directly within the
tool. The plug-ins also include the
XHTML+Voice Programmer's Guide,
which contains examples of the X+V
elements.
URL alphaworks.ibm.com/tech/mmtp

Asynchronous JavaScript and
XML Through Exadel

Exadel has updated Exadel Studio, its
Eclipse-based enterprise Java develop-
ment suite, to support AJAX. Exadel
Studio 3.5, which costs US$199, adds
what the company describes as exten-
sive support for the AJAX JavaServer
Faces components in the Apache
MyFaces Sandbox component library.
The AJAX components are accessible
through the Exadel Palette used with
the Exadel Visual Page Editor.
Dragging and dropping an AJAX user
interface component onto a page
using the Visual Page Editor launches
a wizard for setting up the compo-
nent for use in the Web page. Based
on the Web Tools Project 1.0, Exadel
Studio supports StrutsShale, which is
a new JSF Web application frame-
work, and the upgraded Facelets 1.0
extension to JSF.
URL www.exadel.com

Sorcerer from DHI Takes the
Mystery Out of JavaScript

JS-Sorcerer 2006 is an intelligent
JavaScript plug-in for Eclipse that
helps build correct, interactive, and
cross-browser compatible Web sites
and applications. The plug-in per-

forms syntax checking and type and
flow analysis on standalone
JavaScript files, and provides type-
safe linking for applications and proj-
ects that consist of multiple
JavaScript files. It detects errors at
compile time, eliminating the need to
invoke a browser simply to catch syn-
tax and typographical errors. JS-
Sorcerer lets developers write cross-
browser code, according to the com-
pany, by making use of a standard
interface to ECMAScript, W3C DOM,
and the XMLHttpRequest (AJAX)
object. As an Eclipse 3.1 plug-in, the
US$199 JS-Sorcerer supports
MyEclipse and the Eclipse Web Tools
Platform, and according to the com-
pany, can also be used to help build
AJAX and other rich Internet applica-
tions, in addition to enhancing stan-
dard JavaScript.
URL www.dhitechnologies.com

Canoo Paddles Updated
UltraLightClient Visual Editor

The Swiss firm Canoo Engineering
has updated the graphical editor
used for building applications for its
UltraLightClient, a Java library for
rich Internet application develop-
ment. The ULC client is based on
Swing, and is a pure Java implemen-
tation that doesn’t use AJAX,
JavaScript or other languages. New
to version 5.0 of the Visual Editor is
improved startup performance when
opening a visual class, a new class
wizard, and improved copy & paste
functionality. It also supports
ULCFiller, a new class introduced
with version 6 of the ULC client that
explicitly fills in extra space in the
user interface. A developer license
using the ULC Visual Editor costs
US$499; the editor requires the ULC
client, available separately.
Developer licenses for the ULC
client cost $1,499 per seat.
URL www.canoo.com

LAUNCHPAD
The Latest Tools and Technologies

http://www.myeclipseide.com
http://alphaworks.ibm.com/tech/mmtp
http://www/.exadel.com
http://www.dhitechnologies.com
http://www.canoo.com

Ad No.: SGP-05-32 Job No.: K505031
Client: IMN Product: SGP

Ad Title: SDP Tools And Products Hybrid
This advertisement prepared by: Ogilvy & Mather

To appear in: STD Page
Size/Color: 4/C Page

Bleed: 8.75" x 11.25" Trim: 7.5" x 10.5" Live: 7.0" x 9.75"
Art Director: A. Gray Copywriter: J. Park

Print Producer: M. Piscatelli Traffic: M. Scarpelli
Engraver: MCT

GSI No.: K505031 Di5 1C5
MCT No.: 82190

DOC PATH: CD:K505031 Di5 1C5 Folder:K505031 Di5 1C5 GALLEY: 1 TIMESTAMP: 08/22/2005 – 6:47:42 PM
TERMINAL: Digital 3 OPERATOR: cl PROOF: 5 CLIENT: IBM OUTPUT: CD, 2 Fierys
FONTS: Univers 55 Roman, Univers 75 Black, Univers 65 Bold, IBMHelvetica2004 Regular, IBMHelvetica2004 Black, IBMHelvetica2004 Light,
IBM Boxing Condensed One, IBM Boxing Condensed Three, IBM Boxing Condensed Two, IBM Boxing Extended One, IBM Boxing Extended
Three, IBM Boxing Extended Two, IBMHelveticaCond2004 Black, IBM Boxing Compressed One
IMAGES: approval box.eps, Office Woman.tif, 82184BARS.tif, 82184BARS.tif, 82174BARS.tif, IBM_logo®_REV.eps, 82174BARS.tif, 82184BARS.
tif, 82184BARS.tif, Websphere App Buttons.eps

POWER TO CREATE BETTER SOFTWARE FASTER
IBM MIDDLEWARE. POWERFUL. PROVEN. FIGHT BACK AT WWW.IBM.COM/MIDDLEWARE/TOOLS

AND DOWNLOAD TRIAL VERSIONS OF RATIONAL SOFTWARE MODELER & RATIONAL SOFTWARE ARCHITECT

IBM RATIONAL PRESENTS

•VS•YOU
THE INCREDIBLE

SHRINKING
DEADLINE

MAIN ATTRACTIONS

KNOCKOUT
INNOVATION

INTEGRATED DEVELOPMENT TOOLS SUPPORTING ASSET-
BASED DEVELOPMENT • BASED ON ECLIPSETM • RUNS ACROSS

MULTIPLE PLATFORMS INCLUDING LINUX®

http://www.ibm.com/middleware/tools

Ad No.: SGP-05-32 Job No.: K505031
Client: IMN Product: SGP

Ad Title: SDP Tools And Products Hybrid
This advertisement prepared by: Ogilvy & Mather

To appear in: STD Page
Size/Color: 4/C Page

Bleed: 8.75" x 11.25" Trim: 7.5" x 10.5" Live: 7.0" x 9.75"
Art Director: A. Gray Copywriter: J. Park

Print Producer: M. Piscatelli Traffic: M. Scarpelli
Engraver: MCT

GSI No.: K505031 Di5 1C5
MCT No.: 82190

DOC PATH: CD:K505031 Di5 1C5 Folder:K505031 Di5 1C5 GALLEY: 1 TIMESTAMP: 08/22/2005 – 6:47:42 PM
TERMINAL: Digital 3 OPERATOR: cl PROOF: 5 CLIENT: IBM OUTPUT: CD, 2 Fierys
FONTS: Univers 55 Roman, Univers 75 Black, Univers 65 Bold, IBMHelvetica2004 Regular, IBMHelvetica2004 Black, IBMHelvetica2004 Light,
IBM Boxing Condensed One, IBM Boxing Condensed Three, IBM Boxing Condensed Two, IBM Boxing Extended One, IBM Boxing Extended
Three, IBM Boxing Extended Two, IBMHelveticaCond2004 Black, IBM Boxing Compressed One
IMAGES: approval box.eps, Office Woman.tif, 82184BARS.tif, 82184BARS.tif, 82174BARS.tif, IBM_logo®_REV.eps, 82174BARS.tif, 82184BARS.
tif, 82184BARS.tif, Websphere App Buttons.eps

POWER TO CREATE BETTER SOFTWARE FASTER
IBM MIDDLEWARE. POWERFUL. PROVEN. FIGHT BACK AT WWW.IBM.COM/MIDDLEWARE/TOOLS

AND DOWNLOAD TRIAL VERSIONS OF RATIONAL SOFTWARE MODELER & RATIONAL SOFTWARE ARCHITECT

IBM RATIONAL PRESENTS

•VS•YOU
THE INCREDIBLE

SHRINKING
DEADLINE

MAIN ATTRACTIONS

KNOCKOUT
INNOVATION

INTEGRATED DEVELOPMENT TOOLS SUPPORTING ASSET-
BASED DEVELOPMENT • BASED ON ECLIPSETM • RUNS ACROSS

MULTIPLE PLATFORMS INCLUDING LINUX®
TripConnect Links Network
Of Travelers Via Eclipse

Nowadays, many development
teams—large and small—are seeing
the error of IDE overkill and finan-
cial waste, seeking out technology
that’s appropriate for their needs.
This not only lowers the bottom line
for the big players, but reduces the
cost of entry into the competitive
world of software development. In
any field, competition leads to inno-
vation and better products. Trip-
Connect (www.tripconnect.com) is
an example of both an entrepreneur-
ial spirit and the ability to create
and maintain a software product
while keeping costs to a minimum.
As the company discovered, few
software tools go further in keeping
costs to a minimum than an open-
source toolchain based on the
Eclipse IDE.

CONNECTING PEOPLE, PROFITS
The idea behind TripConnect,
launched in November 2005, is to
help people get advice from a net-
work of other travelers. The premise
is that people value advice from
acquaintances very highly, but they
have no way of knowing where
these people have traveled.

The New York City-based company
provides a personal trip-planning expe-
rience to pleasure travelers by helping
them find information based on where

they want to go, what they want to do,
and when they want to do it.

What differentiates the site is that
it isn’t limited to individual, unso-
licited online reviews. On the
TripConnect site, users sign up, cre-
ate a profile, indicate places they’ve
been and link to others by invita-
tion. The idea is to help users create
a travel “network.” This network

can be a group of friends, people
interested in the same type of activi-
ty, or those who like to frequent a
certain area of the world. In addi-
tion to seeing reviews of places that
have been visited by those in a
given network, users can communi-
cate with one another to ask specific

questions or visit the
profile pages of users
whose tastes run par-
allel to their own.

For many compa-
nies, the idea that
the Internet could
enable an effective
business model
turned dollars into
quarters not so long
ago. However, a few
markets have sur-
vived and flourished
online and one of
them is travel.

“Our business is
based on helping people find travel
information and helping travel sup-
pliers serve their needs,” says Isaac
Sacolick, TripConnect’s COO. “Travel
is one of the more favorable adver-
tising categories on the Internet pri-
marily because the booking sites are
all trying to differentiate themselves.
As we build up traffic, our site will
be more appealing to travel suppli-

In the not-so-distant past, the modus operandus of finan-
cially solvent development shops was to buy a huge IDE

that could do everything they’d ever want it to (and a million things
they didn’t), pay for a lengthy support contract, and get hacking.
Smaller shops without those resources had an extremely difficult
time competing. They simply couldn’t afford the tools.

Winter 2006 www.eclipsereview.com | 11

SHOPTALK
Applications In The Real World

■ TripConnect’s primary development team. From left to right:
William Bagby and Isaac Sacolick.

For many companies, the idea that the Internet could
enable an effective business model turned dollars into
quarters. However, the Web travel market has survived.

http://www.tripconnect.com

12 | ECLIPSE REVIEW Winter 2006

SHOPTALK

ers who want to reach specific cus-
tomer segments.”

THREE FOR THE ROAD
TripConnect’s human resources
include Sacolick, CEO Carter
Nicholas and a full-time programmer
named William Bagby, Sacolick’s
respected coworker from another
company. As with most small enter-
prises, job titles can be deceiving.
Sacolick is in charge of operations,
including everything from marketing
to development. Right now, he esti-
mates that 80 to 90 percent of his
time is spent developing software.

While some of the site’s initial
development was outsourced, its func-
tional specifications were
written by Nicholas and
Sacolick.

Sacolick wrote the tech-
nology specs, such as the
database schema, and
worked with an outside
development team to com-
plete the initial coding.

TripConnect continues
to work with outside soft-
ware development con-
tractors and designers to
supplement its own small
programming team.

Sacolick know that
he’ll have to move out
of development as the
company grows. “Every-
thing I do has to be set
up so that somebody
else can easily take it
over when I move fur-
ther into handling busi-
ness tasks,” he says.

Preparing for that
stage of the company’s
success requires the
team to have appropriate
development procedures

and practices in place. At the same
time, limited financial and human
resources tend to keep TripConnect
in the realm of open source, with
Eclipse as a key piece of the puzzle.

DISCOUNT DEVELOPMENT
The TripConnect site is based on
Tomcat, Struts and MySQL. It’s host-
ed on Linux servers and makes use
of a number of FireFox plug-ins. At
the heart of the development effort
is the Eclipse IDE.

“I don't think we're doing anything
extraordinary but I think we’re a good
example of how using a disciplined
software development process and
leveraging common tools and practices

within Eclipse can be successful,”
Sacolick says.

The first step in building an
application is deciding which pro-
gramming language to use. Here, the
TripConnect team looked at Perl,
PHP, and Java primarily based on its
experience with the languages. In
Sacolick’s experience, much can be
accomplished using Perl and PHP
very quickly and efficiently.
Unfortunately, the code developed
using those languages can become
very hard to work with during a two
or three-year life cycle due to its
structure.

“Thinking down the road, Java
was the only real answer for us.
Once you choose Java, you need to
decide whether you want to use a
simple editor, a commercial IDE,
NetBeans or Eclipse. Eclipse and
NetBeans are free, which put them
at the top of our list,” Sacolick
admits. But saving money wasn’t
the only reason: he had hands-on

experience with
Eclipse, which he used
in some of his previous
jobs. “It was free and
we knew it worked.”

TripConnect found a
number of other fea-
tures that compliment-
ed the Eclipse environ-
ment’s price and their
experience. These tools
included code comple-
tion and the ability to
find declarations of
functions and function
hierarchies.

At a higher level,
TripConnect uses CVS
integration as a dash-
board for development.
Eclipse allows them to
flip between CVS and
Java perspectives in
addition to making use
of Ant views. The com-
pany also uses a plug-
in that provides access
to the Apache Velocity
template engine.

“For a small devel-

Figure 1 TripConnect reaches out to travelers and their community

“Everything I do needs to be set up so that somebody
else can easily take it over when I move further into
handling business tasks,” Sacolick says.

SHOPTALK

opment shop like ours, large IDEs
are too costly to purchase and
implement,” Sacolick says. “Since
there are only two of us working on
development, we don’t need to go
crazy standardizing our environ-
ment. We really only stick with two
major tools that we consider stan-
dards: Eclipse as a development
environment and Firefox as a brows-
er. Everything we do is in one of
those environments or 100 percent
Web based. If we keep it simple, we
can spend most of our time coding
and testing and not playing around
with software toys and tinkering
with configurations.”

REVIEWING THE TRIP
In many organizations, code reviews
are seen as a dreadful process that
developers are dragged into by force.
The code goes up on the whiteboard
and people start poking holes in it.
After four or five weeks, everybody
feels wiped out.

That’s a shame. Code reviews are
essential in discovering mistakes,
both in simple coding and in the
broader application design. It’s
important to get everyone on the
team to buy into the idea that it’s an
important activity. TripConnect takes
this process very seriously, whether
it involves its own small develop-
ment staff or includes contractors. To
make it less of a chore, the team has
come up with a review process that
addresses their needs without
becoming too complicated.

“When we check things into CVS,
we use change sets and have a
nomenclature to log comments in a
check-in,” Sacolick says. “It informs
you of all the change sets and all
the code that’s changed when you
are synchronizing your environment.
We’re using the DIP editor to actual-
ly drill out and look at the differ-
ences in the code and comment
on it.”

Sacolick believes the CVS reposi-
tory gives his team a first line of
defense and QA. If somebody sees a
null pointer or an object that is not
being checked for a null state, it’s

much easier to find at code check-in
than after the application is live.
“Using this method, we manage to
find little defects that often happen
in small groups that are trying to
move fast.” In addition, the develop-
ment team checks to be sure the
logging levels are done correctly,
whether they make sense, and
whether the logged details are too
generalize or too specific.

Due to the size of TripConnect’s
development team, Sacolick and
Bagby are in the habit of critiquing
each other’s work. Bagby's strengths
lean more toward web application
development, so he'll work with
Sacolick's JSP files and offer sugges-
tions on how to use CSS or
JavaScript. In contrast, Sacolick
tends to have a stronger understand-

ing of database, IT and QA issues.
This review process tends to help
them educate each other, improving
the small team’s overall skills.

“When Will started here, he was-
n’t really good at doing database
join queries,” Sacolick says. “That’s
not the case anymore. When he
started, I wasn’t very strong at doing
CSS-style Web pages. I don’t think
I’m an expert at it but now I know
what I’m doing. In a small company
where you have to wear many hats
as a developer, a flexible tool like
Eclipse really helps you get every-
body on a level playing field and
doing things in a similar manner.”

TripConnect also makes use of
what it calls a “refactoring barome-
ter,” which uses code check-ins to
see if the developers are heading in
the right direction or toward code
that they’re going to have to refactor
later on. “From my perspective, it’s
OK to say that we’re going to refac-
tor something later as long we make

note of it,” Sacolick says. “Some-
times the comment is not in the
code but we make every effort to
make a note in the project list when
we see something that needs to be
refactored.”

Sacolick says that TripConnect’s
method is intended to make code
reviews a positive experience for
everyone involved. “We may not use
expensive tools, but we keep each
team member informed of what the
others are doing. We think we’ve
turned it into a positive educational
process that avoids pointing fingers
and placing blame.”

OFF THE GROUND RUNNING
Eclipse offers many benefits to
TripConnect. It saves them money
and keeps the small development

group working as efficiently as pos-
sible, and lets the company stay
lithe and put more features out
faster—vital in a competitive indus-
try like online travel.

“Eclipse makes the programming
experience enjoyable without being
cumbersome. It’s easy to work with,
learn and install, but you don’t have
to learn everything on Day One,”
he says.

“When we started with Eclipse,
we used it as a project explorer and
a schema manager for Java code. It
wasn’t until we became more expe-
rienced with the environment that
we discovered we could plug in
processes, use Ant with it, tweak
our warnings in the Java compiler
and synchronize our settings. These
are all capabilities that we learned
as the need arose. For us, its biggest
strength is that you don’t have to be
an expert with the Eclipse before
you start developing with it.”

—George Walsh, Executive Editor

Winter 2006 www.eclipsereview.com | 13

Eclipse offers many benefits to TripConnect. It saves
them money and allows them to keep their small
development team working as efficiently as possible.

START WITH DRAW2D
To address graphical applications,
the Graphical Editing Framework
provides two toolsets: Draw2d and
GEF. Draw2d is a lightweight GUI
toolkit built on top of
SWT. GEF furnishes
the infrastructure that
allows for the editing
of some models repre-
sented by Draw2d
widgets (called fig-
ures). You use Draw2d
when you only need
image rendering func-
tionality. Use the big-
ger GEF toolset when
you also need to
implement editing.

Draw2d provides
rendering and layout
support for figures that
can be easily cus-
tomized. Figures can be
non-rectangular, nested,
and adorned with borders, fonts, col-
ors, and other graphical elements. The
Draw2d library is not nearly as exten-
sive or as functionally comprehensive
as Swing, but it is safe to say that

they are similar. Draw2d borrows
some concepts and terminology from
Swing, making it easy to learn and
understand. The tool's figures are
hosted in an SWT canvas, as shown

in Figure 1, so the relationship
between Draw2d and SWT is similar
to the relationship between Swing and
AWT, as Figure 2 describes.

GRAPHICAL FLEXIBILITY
GEF can be thought of as an interac-
tion layer built on top of Draw2d. Its
most salient feature is its employ-

ment of an MVC-based design.
While the view is derived from
Draw2d, GEF acts as the controller
that provides a model-to-view map-
ping. In other words, it displays a
model graphically

The clean model-view-controller
separation has allowed GEF to be
model-agnostic. It knows nothing
about your model and doesn’t place
any restrictions on it. It only
requires your model to have a notifi-
cation mechanism (observer pat-

tern). This allows GEF
applications to be built
with a wide range of
disparate models where
the controller provides
the mediation between
the custom domain
models and the light-
weight Draw2d figures.

GEF’s relationship to
Draw2d is similar to
that of JFace’s relation-
ship to SWT. Like
JFace, GEF has the con-
cept of a viewer that
hosts the construction
of a view based on
some underlying
model. While the anal-
ogy isn’t perfect (one

of the main differences between the
two frameworks is that JFace does
not allow editing in its viewers,
whereas GEF exists mainly for that
capability), it’s mentioned mainly to
convey a proper feel about Draw2d,
GEF, and their respective roles
(Figure 3).

While GEF is typically used to
create activity diagrams, GUI

The Graphical Editing
Framework

The Graphical Editing Framework is an Eclipse tools proj-
ect that provides developers with an infrastructure that

can be used to create graphical applications using Eclipse. To make
use of GEF. you should be familiar with the Eclipse platform, SWT,
workbench and related components. Let's explore GEF's dependen-
cies, features and benefits.

PROJECTS
Fundamentals of the Platform | by Pratik Shah

Pratik Shah works at IBM on the Graphical
Editing Framework. He graduated with a
B.Sc. degree in Software Engineering from
Rochester Institute of Technology.

Figure 1 A GEF-based circuit diagram editor

14 | ECLIPSE REVIEW Winter 2006

Winter 2006 www.eclipsereview.com | 15

builders, class diagrams,
and state machines, it is
versatile enough to be
used for just about any
graphical application. In
fact, it can be used any-
where that you can have
an SWT canvas, so it’s
not unusual to see GEF
being used in views,
dialogs, and other appli-
cations. GEF is also cur-
rently being enhanced to
support the easy cre-
ation of rich text editors.

Draw2d, although cre-
ated mainly to support GEF, requires
only SWT, and like SWT, can be used
outside Eclipse. The GEF plug-in, on
the other hand, requires the Eclipse
Rich Client Platform (RCP) and the
org.eclipse.ui.views plug-in, which
provides the properties and outline
views. In the upcoming 3.2 release of
GEF, the dependency on org.eclipse.ui
.views will be made optional, conse-
quently making GEF available for use
in RCP applications.

GEF’S CAPABILITIES
Out of the box, GEF sup-
ports creating, moving,
resizing, and deleting
components, undoing
and redoing those
actions, and other capa-
bilities helpful for creat-
ing graphical applica-
tions. It provides an
easy-to-populate yet cus-
tomizable palette from
which parts can be
dragged and dropped
into the editing space.

The GEF palette also
hosts tools that address
tasks that include selection, panning,
marquee or group selection, and
connection creation. GEF provides
for a number of different types of
annotations to support a variety of
graphical applications. Connections
can be annotated with labels,
tooltips, and arrowheads, and cus-
tomized just like any other figure. It
can also automatically route connec-

tions around components, allow the
user to manually specify routing
locations (called bendpoints), or
some combination thereof.

One lesser known features of GEF
is its support for accessibility. In
addition to letting users perform
graphical interactions via the key-
board, screen readers can detect and
describe graphical components
(accessibility is dependent on oper-
ating system support). GEF also has
an overview for quick navigation in
large diagrams; zooming; grids;

rulers and guides similar to those
found in word processors; snapping
to grid, guides or other components
in the diagram; part cloning; auto-
matic component layout based on a
graphing algorithm; and automatic
viewer scrolling when dragging a
part close to an edge.

GEF makes the job of integrating
with the Eclipse workbench easier as

well. Its viewers can
publish changes to the
workbench’s selection
service, so that views
can be appropriately
populated. Performing
actions via the tool
bar, menu bar, and
context menu is a rela-
tively simple opera-
tion, and GEF provides
some generic actions
as well.

The framework
presents some com-
mon utilities for func-

tionality, external to the editor, that
most GEF-based applications are
likely to support in the Eclipse envi-
ronment. Examples include a tree
viewer for the outline view, undo
and redo support for the properties
view, and other tools. Future plans
include leveraging the new operation
history framework provided by the
Eclipse platform, providing further
integration with the workbench and
other tools, such as the Eclipse
Modeling Framework (see “A Grand
Tour of the Eclipse Modeling Frame-

work,” p. 37).

WHAT YOU
SEE IS WHAT
YOU GET
Draw2d and GEF allow
Eclipse users to quick-
ly get a graphical
application up and
running. With a sim-
ple and extensible
toolkit, Draw2d pro-
vides a lot of flexibili-
ty. GEF adds the inter-
active element to
Draw2d and supplies

the hooks to integrate with the
Eclipse Workbench. The fact that
GEF successfully caters to a large
community with diverse needs
speaks volumes about its versatility.
An elegant architecture and a robust
and feature-rich implementation
have made it the de facto tool when
it comes to graphical editing within
Eclipse.

• Interaction Layer
• Model-to-View Mapping
• Workbench Integration

• Rendering
• Layout
• Scaling

• Native (SWT) Layer

GEF
Draw 2d

SWT Canvas

Figure 3 Overview of GEF components and roles

GEF

RCP

SWT Draw2D

Platform Runtime

ui.views

Figure 2 GEF components and dependencies

I’ve decided not to waste your time enumerating the
benefits of good software testing. No one in his or her
right mind would say that testing is unnecessary.

Besides, if you didn’t understand the value of software
testing, you probably wouldn’t be reading this article.

The question isn’t “Why test software?” The question
is “How do we test software?” In recent years, unit testing
has become the rage. Unit testing means testing each class
(each “unit”) while the software is being coded. Best prac-
tice dictates that you write code to test a class before you
write the code to implement the class. (That way, the test
code isn’t biased toward what you already know the class
is capable of doing.) Many software development shops
set up their CVS repositories to test each unit nightly. So,
testing is an ongoing part of the software development
cycle, and not an afterthought when a project’s code is
cast in stone (well, cast in bits, photons or whatever).

All unit tests have certain characteristics in common
with one another, so it makes sense to bake those charac-
teristics into an API. A good unit testing API facilitates the
creation and running of unit tests. Ultimately, the tested
software is more reliable and more robust.

JUNIT TESTING IN THE ECLIPSE CORE
For Java, the uncontested champion among unit testing
APIs is JUnit. Created in the late 1990s by Kent Beck and
Erich Gamma, this unassuming API defines tests, test
suites, assertions about results, test runners and many
other things a unit test needs to have.

If you’re an Eclipse user, and you’re not already famil-
iar with JUnit, there’s an easy way to get started. Let’s
assume that you start with a class named Account. (The
class stores a customer’s name, balance and other such
information.)

Start by right-clicking the Account class in the package
explorer and then (after a bit more poking around) click
to create a new JUnit Test Case. (You can find details in
the “Writing and running JUnit tests” section of Eclipse’s
own documentation pages.)

When you do this, Eclipse creates a skeletal
AccountTest.java source file, with methods to set up
the test, run tests on individual methods inside the
Account class and tear down all the testing resources
after a run of the test is completed. The only coding you
have to do is to instantiate the Account class and add a
few calls to JUnit’s assert methods (calls like
assertEquals (account.getBalance(), 10.40, 0.01)).
Then, when you select Run As… JUnit Test, Eclipse runs

n BY BARRY BURD

Better Software The
Eclipse Way: Using The
TPTP Test Tools

Step-by-Step Unit Testing With JUnit

Winter 2006 www.eclipsereview.com | 17

Barry Burd is a professor in the Department of Mathematics and
Computer Science at Drew University in Madison, NJ. When he's not
lecturing at Drew University, Dr. Burd leads training courses for pro-
fessional programmers in business and industry. He has lectured at
conferences in America, Europe, Australia and Asia. He is the author
of several articles and books, including Java 2 For Dummies and
Eclipse For Dummies, both published by John Wiley & Sons.

“Let’s see a show of hands. How many of you believe

that software testing is a waste of time?”

No one raises their hand.

“How many of you would like me to review the

benefits of thorough software testing?”

Once again, no one raises their hand.

“How many of you believe that the testing done in

your organization is sufficiently thorough?”

A few people raise their hands, but others just

laugh out loud.

the new AccountTest class and shows the test results in
the JUnit view, as shown in Figure 1.

THE TEST & PERFORMANCE TOOLS PLATFORM
The previous paragraph summarized the support for unit
testing in Eclipse’s core. The support is useful, but it’s
also primitive. There’s no specialized support for editing
test code, running tests, or for reporting and analyzing
test results. For tasks like these, you need something
beyond Eclipse’s core. And of course, I have something in
mind. You need the Eclipse Foundation’s Test &
Performance Tools Platform (TPTP). This TPTP project is
a reincarnation of the Eclipse Hyades project. TPTP is an
ongoing project with four subprojects:

• TPTP Platform
• Monitoring Tools
• Tracing and Profiling Tools
• Testing Tools
Expanding the acronym in the first of these four bul-

lets, we get the “Test & Performance Tools Platform
Platform.” That’s not a typo. This bullet refers to the
Platform underlying the all-encompassing Test &
Performance Tools Platform. The TPTP Platform subpro-

ject provides a common infrastructure for the other three
subprojects.

This article is about testing, so we’ll skip past the mid-
dle two subproject bullets (Monitoring plus Tracing and
Profiling) and cut directly to the last of the four items.
This fourth subproject (the Testing Tools subproject) has
tools for editing and running tests and additional tools for
analyzing and reporting test data.

To show you the Testing Tools basics, let’s start again
with a class named Account. You use a TPTP JUnit Test
wizard to create a test based on your existing Account
class. The wizard builds a file named AccountTest.test-

suite and TPTP automatically opens the TPTP JUnit Test
editor—an editor for .testsuite files. Under the hood,
AccountTest.testsuite is a Zip archive containing an
XML file. This XML file describes the testing that I intend
to apply to my Account class.

Figure 2 shows one of the TPTP JUnit Test editor’s
pages. Using the page’s Add and Insert buttons, you
define some testing behavior. The behavior in Figure 2
describes a loop containing a test method invocation.
(Later, when you run the test, Eclipse calls the
testAddInterest method five times. By checking the
Synchronous box in Figure 2, you insist that the first
method call returns before the second begins, the second
call returns before the third begins and so on.)

If you accept certain TPTP options, the code in an
AccountTest.java file stays in sync with your TPTP JUnit
Test editor choices. The syncing isn’t foolproof, so you
have to be careful. For example, you can add certain
methods to the AccountTest.java file or the TPTP JUnit
Test editor. Either way, the AccountTest.java and
AccountTest.testsuite files stay in sync. But if you tin-
ker with the behavior code in the AccountTest.java file
(the code that says “invoke this test method at this partic-
ular time”), then all bets about file synchronization are
off.

And speaking of the AccountTest.java behavior code,
this automatically generated code uses reflection. With
reflection, TPTP can sink its hooks into your test:

HyadesTestSuite loop1 = new HyadesTestSuite(
“Loop 1”);

accountTest.addTest(new RepeatedTest(loop1, 5));
loop1.setId(“DCEEAB781FB3F62E1C1DC5609D1811DA”);

loop1.addTest(new AccountTest(“testAddInterest”)
.setId(“E346BEC1401EFED4F6977E509B8511DA”)
.setTestInvocationId(

“DCEEAB781FB3F62E226262A09D1811DA”));

When you run a test using TPTP, you get a log that’s
more detailed than the JUnit view in core Eclipse. For a
look at the TPTP Test Log, see Figures 3 and 4.

With the TPTP Test Log editor, you can navigate quick-
ly from one test event to another, navigate from an event
to its source, filter for different kinds of event verdicts
(pass, fail, inconclusive, etc.) and perform other handy
tasks. You can even save the log for later analysis. The log
is saved in its own .execution file, another Zip archive
containing an XML file.

18 | ECLIPSE REVIEW Winter 2006

Figure 1 The JUnit view in core Eclipse

Figure 2 A portion of the TPTP JUnit Test editor

JUnit-Based Testing

REMOTE TESTING MEANS BETTER RESULTS
Many applications involve the transfer of data or instruc-
tions from one computer to another. Sometimes you can
test these applications by
creating fake transfers, run-
ning the sender and receiver
simultaneously on one com-
puter. But fake transfers
don’t simulate all the effects
a network can have on appli-
cation execution or perform-
ance. Instead of faking the
transfers on one box, you’re
much better off using remote
testing, where your LAN and
WAN network become an
integral part of the test.

A suite of remote tests tell
you whether an application
can or cannot withstand the
uncertainties associated with
network transmissions. TPTP has facilities for doing remote
testing. Here’s how it works:

• A location is a computer that’s running an application
to be tested. You can think of a location as a URL
referring to a particular computer, but a location has
other properties. These properties describe the envi-
ronment in which the target application runs. (What’s
the CLASSPATH? Which Eclipse plug-ins are enabled?
And so on.)

• An artifact is a unit of information describing some
aspect of a test suite. The AccountTest.testsuite file
described earlier is an example of an artifact.

• A deployment pairs artifacts with locations.
Each location, each artifact and each deployment is

called a test asset. TPTP provides editors for all kinds of
test assets. Figure 5 shows a page of the editor for a
deployment asset. As you see in Figure 5, the deployment
associates a test suite (part of the AccountTestArtifact)
with a remote location called TheServerOnTheOtherSide
OfTheWorld.

It takes some experience with TPTP to get a pairing
like this to work correctly. That’s because effective com-
munication between the local and remote machines
depends on properties and settings for all of the test
assets.

If you run into trouble, you should visit the Deploy-
ment Ground Rules page of the TPTP help files. (As with
other plug-ins, these help files become available when you
install the TPTP plug-in.) Sometimes it helps to post a
query on the eclipse.tptp newsgroup. (Point your news
client to news.eclipse.org.)

RUNNING TESTS WITH VARIABLE DATA
To test a class, you may want to run the class’ methods
several times— using different input data each time.
One time you make the account balance positive, anoth-
er time you make it zero or negative, and for another
run you omit the balance or try to make the balance be
a non-numeric value. Later, you try different pairs of
balances and interest rates.

TPTP provides a nice way for you to manage the
changing of input data val-
ues. It’s called a datapool,
another member of the cat-
egory called “test assets.”
Like other kinds of test
assets, the datapool has its
own editor. This editor
includes a form for setting
general properties of the
datapool and a spreadsheet
for modifying datapool val-
ues, as you can see in
Figure 6.

Like the spreadsheet in a
familiar office suite, the
datapool spreadsheet is
divided into one or more
worksheets. Each datapool

worksheet is called an equivalence class; each equiva-
lence class stores rows of related data values. Of course,

Winter 2006 www.eclipsereview.com | 19

JUnit-Based Testing

Figure 4 Detailed properties of a test failureTor

Figure 3 The Events tree in the TPTP Test Log editor

Figure 5 The Deployment editor

you don’t have to type val-
ues into the spreadsheet by
hand. TPTP lets you import
the data from a CSV file.

With a datapool in hand,
you modify your testing
code to make calls to the
datapool API. This API
includes an iterator that
steps through the rows of
the datapool table, grabbing
different data each time you
make a getValue call.

AUTOMATE TEST RUN
You can create programs
and scripts to perform unat-
tended runs of your test suites. In a Java program, you
instantiate a TPTP class named
AutomationClientAdapter and call the instance’s exe-
cute method.

In an Ant script, you create a target with a tptp:test
tag. In a shell script, you run the AutomationClientAdapter
class using the Java VM. In any of these scenarios, you can
run large numbers of tests, change characteristics of tests
on-the-fly, integrate test results with other processes, and
do all the nice things you can do with programmatic runs.

THE AUTOMATED GUI RECORDER
A GUI program can be difficult to test. You don’t just
tell the program to run, have the program slurp up some
data, and then watch the program spew out results.
Instead, you expect a user (often a naïve user) to click
buttons, fill text fields, and do all sorts of things in
some strange, unanticipated order. That’s the nature of a
GUI program.

So, to test a GUI program, you want to simulate
sequences of mouse events and keyboard events. This can
be accomplished by installing an add-on to TPTP called
the Automated GUI Recorder (AGR). To download the
AGR, visit the regular www.eclipse.org/tptp Web page.

To use the AGR, start by
creating a new Plug-in
Project. (The AGR doesn’t
run on plain old non-plug-in
Java Applications, GUI or
otherwise.) Next, you create
a new TPTP Automated GUI
Test Suite. Within that suite,
you create a new TPTP
Automated GUI Test.

As you march through
the steps in the Automated
GUI Test wizard, you speci-
fy the Eclipse perspective in
which your new plug-in will
operate. When you finish
the wizard, Eclipse jumps to
whatever perspective you

specified and adds a float-
ing control center dialog
like the one you see in
Figure 7.

From that point on, the
dialog works very much
like an old-fashioned macro
recorder. You press keys
and click your mouse on
the Eclipse workbench. The
AGR records these events in
one of two ways. It records
the fact that you click cer-
tain objects, or it records
the fact that you click at
certain coordinate locations.
Of course, the click-on-

objects way of recording is usually better, so the docu-
mentation encourages you to choose this option.

To stop recording, click the little red square in the
control center dialog. Eclipse returns immediately to
whatever perspective it had before recording started.

Your test is now recorded in an XML document. The
document is zipped and encoded inside a .testsuite
file, but you can easily view the document in the editor
for TPTP Automated GUI Tests. If you’re satisfied with
your recording, you can replay all of its actions. When
you do, you get a test log (a .execution file) just as you
do when TPTP runs other, non-GUI tests.

TEST REPORTING WITH BIRT
You may already be familiar with BIRT, Eclipse’s Business
Intelligence and Reporting Tools project. Using BIRT, you
can generate reports of all shapes and sizes, making
tables, charts, graphs and anything else you want from
existing data.

What if the “existing data” come from a TPTP test? The
newer versions of TPTP integrate nicely with BIRT. So if
you don’t like the reports shown in Figure 3 and Figure 4,
you can create your own. You can combine and illustrate
test results in a way that suits your needs.

HAPPY TESTING
As the saying goes, “The job
isn’t finished until the paper-
work is done.” People used
to apply this saying to soft-
ware testing, not to tradi-
tional bureaucracy. But these
days, the testing isn’t the
final paperwork.

Indeed, as we know, test-
ing is a continuous part of the
software life cycle. Eclipse with
the Test & Performance Tools
Platform encourages continu-
ous integrated testing. It makes
testing easier, more uniform
and more manageable.

20 | ECLIPSE REVIEW Winter 2006

JUnit-based Testing

Figure 6 The spreadsheet page of a datapool editor

Figure 7 The AGR control center dialog

http://www.eclipse.org/tptp

http://www.parasoftcom/EclipseReview

http://www.s-3con.com

http://www.s-3con.com

Subscri
be To

day!

www.Ecli
pseR

evie
w.com

http://www.eclipsereview.com

Editors, wizards, tools and APIs—thanks to the Web
Tools Project, all these facilities are standing by to
help you develop and debug Web and J2EE applica-

tions faster than ever before.
WTP is divided into two subprojects, Web Standards

Tools (WST) and J2EE Standards Tools (JST). The names
reflect WTP’s charter, namely that it provides tools for
standards-based runtimes. In contrast, emerging frame-
works such as Spring, Hibernate and Beehive are outside
WTP’s charter, and are left for commercial and other
open source tool projects to address.

WTP is distributed at no charge as open source soft-
ware, and is licensed for use under the Eclipse Public
License (EPL).

Many of the companies behind WTP contributing
code and resources are also adopters of WTP them-
selves; they’re building commercial products on top of
its frameworks and incorporating some or all of the tool
set into to their own products. The result offers a variety
of choices: You and your team can choose freely
between the standard WTP distribution or one of the
specialized versions that offer additional tools, server
support and other features. Let’s look at what WTP can
do, how it works, and what it can do for you.

EDITING AND SUPPORT
All Eclipse projects provide a combination of end-user
tools and a platform for adopters, which is a set of APIs
that can be used by third parties to build new tools
using the project’s infrastructure.

Probably the first thing you’ll notice after installing
WTP is that there’s a new perspective designed to help
you author and deploy applications, the “J2EE” perspec-
tive. This perspective includes the project navigation
view—a replacement for the standard package explorer
view from Java that provides a specialized view of Web
and J2EE projects, including virtual navigation into par-
ticular categories, such as the servlets in a project. (Note
that when debugging an application, WTP will automati-
cally switch to the debugging perspective and that con-
text’s collection of views.)

Use of the new J2EE perspective and its views is
optional, of course, and you can always return to the
Java perspective.

WTP includes editing support for a wide variety of
languages other than Java that are required for Web
application development, including JSP, HTML, CSS,
JavaScript, XML Schema, WSDL, DTD and XML. The
platform makes editing in these languages similar to the
experience of editing Java in Eclipse. You get a high
fidelity experience that includes “check-while-you-type”
capabilities.

The Web Tools Project also supports code assist, for-
matting, and other “intelligent editing” operations,
depending on the language in question. Java snippets in
JSP even respond to Java refactoring events (see Figure 1),
which helps to keep the application consistent across
changes to the model and the UI.

n BY TIM WAGNER

Develop Web Applications
FASTER With WTP!

Extending Editing Beyond Java

Tim Wagner is the project lead for the Eclipse Web Tools Platform
Project and manages the BEA engineering team responsible for the
Workshop product line. Dr. Wagner was the program chair for the
2006 Eclipse Conference and also serves on the Eclipse Architecture
and Planning Councils. His professional background and patent
contributions span compilers, data integration/XQuery, IDEs and
J2EE tools. Research interests include metadata-driven development
and visualization techniques for service-based architectures.

Winter 2006 www.eclipsereview.com | 25

WTP INCLUDES EDITING SUPPORT FOR
A WIDE VARIETY OF LANGUAGES OTHER
THAN JAVA THAT ARE REQUIRED FOR
WEB APPLICATION DEVELOPMENT.

WTP’s JSP editor uses the Java editing features from
Eclipse’s Java Development Toolkit (JDT), so that you get
the same experience with Java fragments embedded in
JSP that you would in editing a standalone Java file. In
addition, WTP’s JSP editor provides taglib, HTML and CSS
checking. The platform exploits the built-in debugger sup-
port for The Java Community Process’s JSR 45 (“Debug-
ging Support for Other Languages”) for JSP debugging
based on either source (JSP) or Java-level views.

In addition to source editing support, WTP provides
graphical editing for WSDL and XML schemas that allow
even beginners to view, navigate and modify documents
written in these languages without a complete under-
standing of their syntax. The graphical overview, proper-
ty view and document structure view cooperate to pro-
vide a complete navigational and editing package.

SERVER VIEW AND CONFIGURATION
Editing is great, but once your application is written,
you’ll need to deploy it to your favorite server. While

high-performance implementations of commercial J2EE
application servers are generally available from their
vendors, basic implementations for several of the many
commercial and some open source Web and application
servers are available out-of-the-box with WTP. These
include Derby, Geronimo, Glassfish, JBoss, JOnAS,
Oracle Application Server, Tomcat, BEA’s WebLogic and
IBM’s WebSphere.

WTP wizards support the selection of any of the serv-
er types you have installed, as shown in Figure 2. With
the server selected, you can configure a particular
instance of it using the visual server configuration tool
(see Figure 3).

To see what state your various server instances are
in, or deploy applications or modules to them, you can
use the server view, which is like a miniature built-in
console, as shown in Figure 4. The server view provides
a dynamic display that captures the list of active

servers, the state of each (“synchronized” means that
the server’s current state matches that of the correspon-
ding Eclipse project source) and any important status
messages. Nested below the server name in the first col-
umn are the names of the deployed modules.

FACETS
When working with traditional Java projects, IDE users
are accustomed to handling certain environmental
details, such as the JRE version (1.4 versus 1.5, for
example) or setting the classpath. All of these issues
apply in WTP projects.

However, there are also a host of new issues that arise
from the server context. For example, Enterprise
JavaBeans can be deployed to an application server, such
as Geronimo or WebLogic, but cannot be run by Tomcat.
Modules designed to exploit a proprietary feature of
WebSphere may not work with WebLogic and vice versa.
To handle these differences, the WTP team created a way

26 | ECLIPSE REVIEW Winter 2006

Web Development

Figure 1 JSP participating in Java method refactoring

Figure 2 Using the WTP wizard to define a new server type

THE PROJECT VISION OF JSF IS TO
ADD SUPPORT TO THE ECLIPSE WEB
TOOLS PROJECT TO SIMPLIFY
DEVELOPMENT AND DEPLOYMENT
OF JAVASERVER FACES APPLICATIONS

to associate additional environmental constraints with a
particular project, called “facets.” Facets help users
understand which projects (or features used by a pro-
ject’s source code) can successfully be deployed to
which runtimes. The primary benefit is a simpler, more
consistent user experience. A sample facets selection
screen is shown in Figure 5.

At the API level, the project facets framework helps a
plug-in developer think of projects as being composed of
“units of functionality” that can be added and removed
by the user. This framework avoids the need to have
every software company create its own project wizards
or activate/deactivate menu items to enable specific
functions on a project. So, you can simply select facets
supplied by the plug-in writer in the project creation
wizard and the new features are activated.

Another major benefit is the ability to accurately
model the capabilities of various server runtimes by
indicating which facets the server supports. Accurately
modeling the server functionality enables the WTP user

interface to prevent the user from accidentally using fea-
tures that aren’t available on the target runtime.

JAVASERVER FACES
The JavaServer Faces Tools project is a sub-project of
WTP. The project vision is to add comprehensive sup-
port to the Web Tools Project to simplify development
and deployment of JavaServer Faces applications. The

JSF project team is actively working to come out of the
incubation phase with a technology preview that ships
as part of the WTP 1.5 release in June. Figure 6 illus-
trates the JSF tooling in use.

The first release of the JavaServer Faces Tools project
will include a productive JSF-JSP Page Source Editor. The
planned features include an extensible, metadata-driven
Content assist, Quick assist, Quick Fix and Hyperlink for
attribute values of specific tags of a taglib. The editor
will also feature a component palette to add tags to the
source editor.

The JavaServer Faces Tools project will provide a sophis-
ticated multipage editor for the application configuration
files that includes a graphical diagram editor for defining

the navigation rules and a
form-based editor for defining
managed beans and other ele-
ments in the configuration
file. An EMF model for the
configuration files will pro-
vide rich validation and refac-
toring capabilities, while
enabling ISVs to extend the
existing capabilities with fea-
tures of their own.

EJB 3.0 TOOLS (DALI)
The Eclipse Technology
project provides an arena in
which new technologies can
be incubated until they are
sufficiently complete to

Winter 2006 www.eclipsereview.com | 27

Web Development

Other projects relating to WTP

There are several related Eclipse projects and project pro-
posals that may be interesting to users of WTP:

The PHP technology project provides editing, debugging and
server simulation for the PHP language using the WTP infra-
structure.

The DTP top-level project is providing data services, including
connection managers, SQL editing and models for this func-
tionality. WTP will be migrating from its existing RDB imple-
mentation to DTP after the 1.5 release.

The STP top-level project provides SOA (Service-Oriented
Architecture) tools and builds on the Web Services and
deployment support in WTP.

The ATF technology project proposal aims to bring AJAX tool-
ing to Eclipse. As of mid-March 2006, it is currently gather-
ing community feedback prior to its creation review.

The Lazlo technology project is another RIA (Rich Internet
Application) technology.

Figure 3 Capturing information about a server instance with the WTP Server Overview

THE ECLIPSE TECHNOLOGY PROJECT
PROVIDES AN ARENA IN WHICH NEW
TECHNOLOGIES CAN BE INCUBATED UNTIL
THEY ARE SUFFICIENTLY COMPLETE TO
GRADUATE INTO ONE OF THE EXISTING
TOP-LEVEL PROJECTS.

graduate into one of the existing top-level projects. One
of these projects, Dali, represents tooling for the soon-
to-be-completed Enterprise JavaBeans (EJB) 3.0 specifi-

cation. When the specification is complete, the expecta-
tion is that Dali’s tools will migrate into WTP for further
development, shipping as a technology preview along
with WTP 1.5.

The Dali EJB Object-Relational Mapping project pro-
vides frameworks and tooling for the definition and edit-
ing of object/relational mappings for EJB 3.0 Entities. The
tooling focuses on minimizing the complexity of creating,
editing and updating O/R mappings. Dali includes
enhancements to the existing Java editor and property
view functionality as well as additional views that help
you exploit the default rules built into the EJB 3.0
persistence specification and view/edit this infor-
mation through the properties view.

You can also leverage relational tools built into
WTP to provide context-sensitive values for table
and column selections, extend project validation
to augment the “Problems” view with errors and
warnings that assist them in creating valid entity
definitions and automate common tasks. These
tasks can include the generation of Entity defini-
tions from Tables or Table generation from Entities
to jump start new projects and prototypes.
Problems are detected based on mapping rules
and by verifying that default values resolve cor-
rectly against the database schema in use.

In addition to these user tools, Dali provides
mechanisms that let software companes enhance
and extend this functionality for their own EJB
3.0-based persistence implementations or to
enhance or modify the provided toolset.

WTP has a host of other user tools that we
haven’t touched on here. Check out the WTP Web
site for more extensive information relating to:

• Web services, including wizards to handle top-
down (start from WSDL) and bottom-up (start from
JavaBean) cases.

• Web services explorer, a built-in Web applica-
tion that includes UDDI browsing and
dynamic WSDL execution.

• EJB Session and Message Bean creation
wizards.

• Servlet creation wizards.
The current release of WTP is 1.0.1 (February 2006).

The next major release will 1.5; planned to be available
in late June 2006 as part of the joint project release
known as Callisto, the simultaneous release of Eclipse
3.2 with several top-level projects—more on this later.

Based on adopter feed-
back, WTP may also
release additional service
packs on the 1.0.x line as
needed. WTP 1.5 will
update the existing WTP
capabilities and provide
the initial releases (in
technology preview sta-
tus) of JSF and Dali.
These previews will

enable the community to begin using these features
prior to the finalization of their APIs.

OTHER PLANNED 1.5 IMPROVEMENTS
Apart from the two new technology previews described, the
remainder of WTP activity for release 1.5 will be focused
primarily on improvements to its platform, although the
tools will be receiving refreshes, including bug fixes and
some performance enhancements.

The Eclipse platform is making major investments in sev-
eral key areas for its 3.2 release, including improvements to

28 | ECLIPSE REVIEW Winter 2006

Web Development

Figure 4 The WTP server offers a console-like view for server status

Figure 5 The project facet selection page helps users indicate features
needed from the server

IN ADDITION TO THESE USER TOOLS, DALI
PROVIDES MECHANISMS THAT ENABLE
ISVS TO ENHANCE AND EXTEND THIS
FUNCTIONALITY FOR THEIR OWN EJB 3.0-
BASED PERSISTENCE IMPLEMENTATIONS.

common navigation framework command handling imple-
mentation and an updated undo/redo infrastructure.

WTP 1.5 will build on top of Eclipse 3.2 and will incor-
porate many of its improvements. It will also include
changes that will enable validation to run in the back-
ground as well as other performance-related functionality.

Updates to the build and deploy infrastructure will be
added to improve performance on projects that have many
files, along with support for Apache Axis 1.3, an imple-
mentation of the Simple Object Access Proptocol (SOAP).

To make it easier for adopters to customize the behav-
ior and appearance of WTP at a fine level of granularity
for their own product needs, additional support will be
added based on adopter feedback, including
more granular capabilities and additional wiz-
ard customization hooks.

WTP’s ongoing division into individual fea-
tures will let you “pick and choose” tools or
elements that are useful to your work.
Software companies will also benefit from the
breakdown as part of the enhancements. In
addition, the new release will offer better
organization of the generic server plug-ins,
updates for specific servers, and the removal
of old and obsolete server definitions.

WTP AS A PLATFORM
In this article we’ve focused mostly on the
Web Tools Project as a Web developer sees
it—a collection of tools that make Web and
J2EE application development faster and
easier. But as we’ve mentioned, WTP is also
a platform, carefully designed so that software
companies can use its framework as part of
their own commercial or open-source

offerings.
In addition to adhering to the Eclipse Software

Development Process, such as the use of Bugzilla, open
communication and community involvement, WTP follows
several organizing principles to ensure that adopters can
successfully leverage the platform. The Eclipse Project has

set a high standard for technical excellence, func-
tional innovation and overall extensibility within
the Java IDE domain. WTP applies these same
standards to Web/J2EE application tooling.

A major goal of WTP is to support a vital
application development tools market. WTP’s out-
of-the-box functionality is useful on its own, but
has also been designed from the start to be exten-
sible, so commercial vendors can use what the
project delivers as a foundation for their own
product innovation.

By the same token, vendor neutrality is at the
core of WTP. It encourages Eclipse participation
and drives Eclipse market acceptance by strength-
ening the long-term product value propositions of
application development vendors.

WTP delivers an extensible, standards-based
tooling foundation on which many software com-
panies can create value-added development prod-
ucts for their customers and end users.

Although WT’'s focus is on runtime technolo-
gies with accepted standards and existing deploy-
ments, it also tracks emerging standards where
leading-edge tools are desirable. Where multiple

technologies are widely used for a given functional need,
it attempts to support each, subject only to technical feasi-
bility and the goal of providing the most capable and
extensible foundation for the long term.

WTP introduces new APIs in a provisional status for
one major release, so that adopters have the opportunity to
evaluate, comment and build trial implementations on

Winter 2006 www.eclipsereview.com | 29

Web Development

Figure 6 A graphical diagram editor for navigation rules in the JSF
project tools

Figure 7 An illustration of the Dali tools in action

them. If all goes well, the API is declared in the subse-
quent release; otherwise, the feedback is used to refine the
interface until it meets adopter needs. In other words, no
API is released before its time.

The platform’s interfaces with other top-level products,
including the Eclipse platform itself, are evaluated and

rearchitected as needed for each release to eliminate
redundancy and ensure overall architectural integrity. In
addition to providing its adopters with APIs, WTP treats
this part of its community as first-class citizens with
adopter “hot list” bug tracking, requirements gathering
and API adoption tools. All of these facilities are available
to the community as a whole, but they are most useful for
companies seeking to use WTP in their products.

GETTING WTP
WTP 1.0.1 and earlier versions are available in a variety
of packages from the WTP download site. The WTP stand-

alone binaries and SDKs can be found at
download.eclipse.org /webtools/downloads. WTP bundled
with the corresponding Eclipse platform and all tool proj-
ect prerequisites (EMF, GEF and VE) can be found at the
same location. An update from 1.0 to 1.0.1 (and eventual-
ly from 1.0.1 to 1.5) resides at download.eclipse.org
/webtools/updates /index.html. While WTP includes out-
of-the-box support for several servers, you will need to
download and install those servers separately. See the
“Getting Started” section of the Web site (especially the
tutorials), the included documentation and the WTP
newsgroup (eclipse.webtools) for additional help.

HELPING OUT
As with all open-source projects, WTP advances through
donations, especially donations of time. Contributing code
is great: If you’re interested, please see the “help wanted”
ads in the planning documents or contact the development
team at wtp-dev@eclipse.org. You can find out more about
developing with WTP on www.eclipse.org in the “Develop-
ment” area.

Not able to help code? There are other ways to improve
WTP—even on a very part-time basis. The project can always
use help in writing tutorials for the WTP Web site, testing (and
filing any bugs you find), incrementally improving the docu-
mentation, or even helping out others on the newsgroup
(eclipse.webtools). As with all open-source projects, when
more people are involved, the result will inevitably be a much
more useful tool.

Web Development

THE ECLIPSE PROJECT HAS SET A HIGH
STANDARD FOR TECHNICAL EXCELLENCE,
FUNCTIONAL INNOVATION AND
OVERALL EXTENSIBILITY WITHIN THE
JAVA IDE DOMAIN.
30 | ECLIPSE REVIEW Winter 2006

http://www.bzresearch.com
http://www.ecliipse.org
http://download.eclipse.org/webtools/downloads
http://download.eclipse.org/webtools/updates/index.htm;

Eclipse is used for different things by different people.
For some, it’s an integrated development environment
for building stand-alone Java applications. Others use

Eclipse to build Web applications, C++ applications,
embedded applications, plug-ins to extend Eclipse and
more. Many companies and individuals also use Eclipse as
a tools platform, implementing or porting their tools to
work as Eclipse plug-ins by integrating them into the
Eclipse SDK as rich client applications. The third category
of Eclipse users just want to use the integrated develop-
ment environment to interact with their favorite tools.

No matter which you are, though, there are many little-
known procedures that can make your experience with
Eclipse more enjoyable, and we’ll cover eight of them
here. Some can be performed upon installation. Others

will make it easier for you to navigate your way through
Eclipse. And some will just make it easier for you to
develop Eclipse plug-ins and applications. Before we go
any further, let’s identify three specific directories we’ll
use in our eight tips:

• ECLIPSE_HOME_DIRECTORY: the directory where
you installed Eclipse.

• ECLIPSE_WORKSPACE_DIRECTORY: the directory
containing your Eclipse projects.

• ECLIPSE_RUNTIME_WORKSPACE_DIRECTORY: the
directory your Eclipse workbench uses for the wor-
space when performing runtime testing.

n BY DWIGHT DEUGO

8 Can’t Miss Tips For
Using Eclipse

Expediting Tasks in the Eclipse IDE

Winter 2006 www.eclipsereview.com | 31

PLACE THE WORKSPACE SOMEPLACE USEFUL
Eclipse stores your projects in a folder called
Workspace, which is the default name. Provided you
never clicked the checkbox, every time you start
Eclipse it will ask you which workspace you want to
use for the current session. If the workspace location
you specify doesn’t exist, Eclipse will create one for
you. If you accidentally clicked the checkbox and are
now unable to specify the workspace location, you
can easily return it to its original value. Once Eclipse
has started, select the Window-> Preferences menu
from the workbench. This will open the Preferences
dialog. Navigate your way to the Startup and

Shutdown preferences and check “Prompt for work-
space on startup.” Exit Eclipse and start it up again.
You should see the Workspace Launcher this time.

Just in case you wondered, plug-ins store their
preference values in their own directories under the
.metadata\.plugins directory of the workbench. For
example, look in ECLIPSE_WORKSPACE_DIRECTORY
\.metadata\.plugins\. You should see a number of
plug-in directories each containing XML files with cur-
rent preference settings.

This tip helps you identify where you should place
your workspace. I create a folder called Eclipse
Workspaces and place all of my new workspaces in
subdirectories of that folder. It doesn’t matter where
you put the workspaces. You can follow whatever
organizational strategy you want. However, don’t put
your workspace in your Eclipse installation directory. I
have seen people reinstall Eclipse or upgrade to a new
version and the first thing they do before grabbing the
new download is to delete their old Eclipse installa-
tion directory. If your workspace is in there, say good-
bye to it when you upgrade! Putting your
workspace(s) in a non-Eclipse installation directory
will make sure you never suffer this fate.

1

32 | ECLIPSE REVIEW Winter 2006

8 Tips for Eclipse

POINT YOUR PLUG-INS
One of three things typically
occurs when you start
Eclipse with a new plug-in
in the ECLIPSE_HOME
_DIRECTORY\plugin directo-
ry. The best-case scenario is
that you start Eclipse and
see the new menu items,
editors, or views that the
new plug-in contributes to
Eclipse. In this case, you
know that the plug-in is activated and you are ready
to use the new functionality.

The next case is that the plug-in is activated, but
did not enable selections of its menu, editors, and
views. This is actually a feature of Eclipse. Rather
than having every new plug-in add new menus, edi-
tors and views to the workbench, plug-in developers
can initially disable them and let the end-user enable
the functionality as needed. To enable a plug-in’s fea-
tures, first select the Window->Customize Perspective
menu. This will bring up the dialog.

In the Customize Perspective window, you will need
to look for your plug-in’s category name and enable its
functionality. Usually, a close relationship exists
between the category name and the name of the plug-
in, so you should have no problem finding the category
you need to work with. In this window, you can see

that the Plug-in
Development category is dis-
abled and the corresponding
shortcuts are not enabled for
the New submenu. By
enabling the category, you
will find its shortcuts added
to the Workbench’s File-
>New menu.

Enable all of the cate-
gories in the submenus
and then switch over to the

Commands tab. Now, enable your plug-in’s com-
mand groups for the current perspective. After
you’re done, you should have access to your plug-
in’s full functionality.

The last thing that can occur with a new plug-in—
and the worst—is that you can’t find any evidence that
it activated. If you run into this problem, you need to
navigate to your Eclipse workspace. This is the location
you identified when Eclipse started, as shown back in
our first tip. Now, look for the file ECLIPSE_WORK-
SPACE_DIRECTORY\.metadata\.log. If there is a prob-
lem with your new plug-in, the contents of the log file
should give you some indication. For example, it might
give you a stack trace of an exception that occurred
while activating the new plug-in. Knowing where the
log is will not fix the problem, but it can give you an
idea of what to do next.

2

3 SEPARATE YOUR SOURCE
AND OUTPUT FOLDERS
After installing Eclipse, you are ready to create a
Java project. Switching to the Java Perspective and
selecting File->New->Project brings up the Project
Wizard. You can enter a project name and click Next
to enter specific Java build settings for a project, or
Finish to have the project created using the defaults.

Java source files you create will have their correspon-
ding compiled files located in the same directory. The
issue here is that you will have two types of files in the
same directory, each with different roles and needs. For
example, when you back up your project, you usually
don’t save the .class files. However, when deploying
your application, you need the .class files but not the
.java files. You will find that in the future many tasks
you perform require you to identify either the source
(.src) or the compiled (.bin) files. You can make your
life easier by separating your compiled class and java
files into different directories from the start.

Separating your source and compiled files is easy.
When you create your Java project, make sure to
select the radio button that says “Create separate
source and output folders” on the New Java Project
page. This button is not the default selection after a

new installation. This option will create an src directo-
ry for your Java packages and source code, and a bin
directory for your compiled Java class files. You will
see the src directory in the Package Explorer View but
not the bin directory. By switching to the Navigator
View, you will see they are both present.
Create “””separa””””””””te source and output folders

.src
bin

src
bin

8 Tips for Eclipse

MAP YOUR PLUG-IN CLASSES
Have you ever wondered how many Eclipse plug-ins are
in the standard Eclipse SDK? Just look in your
ECLIPSE_HOME_DIRECTORY\plugins directory to get

some idea. Each plug-in contributes a number of pack-
ages and classes that you can use in your own plug-in
development, provided the developers of those plug-ins
made their packages exportable. The trick lies in know-
ing which classes you can use.

A technique to find the available classes from other
plug-ins is to create a plug-in project called TheWorld
and then add every plug-in’s External JAR file to the
Libraries portion of the project’s build path. If you get
an error saying there are duplicates, simply delete any
JARs you just added that created the duplication. This
way, whenever I am in the Hierarchy View and use the
right button to select Focus On… from the context
menu, I am searching all of the available classes. In the
Focus On Type dialog, notice that by entering *antr as
the search criterion I get all classes beginning with the
word Antr from the available plug-ins.

Near the bottom of the Focus On Type window, you
can select a class to find out which plug-in it is associat-
ed with. Selecting the class in the Hierarchy View will
also show you the same information at the bottom of
the workbench, as shown below. I believe strongly that
the best documentation for Eclipse is Eclipse. So don’t
wander around in the dark. Get everything where you
can find it, see it and use it: in Eclipse.

4

Winter 2006 www.eclipsereview.com | 33

I almost always forget to select this radio button. To
make this the default choice, you can set this Build Path
Preference when you first install Eclipse. Selecting the
Window -> Preferences menu will bring up the
Preferences dialog. Select Java -> Build Path in the
Preference dialog and change the radio button from
Project to Folders. Result: You will always have your
source and compiled code in separate directories.

If you prefer, you can use names other than src or
bin for these directories, but since these tools are often
used by other tools and scripts, such as Ant, think long

and hard about
using some-
thing different.
You may not
realize it yet,
but this small
effort will
make your
code easier to
backup,
deploy, man-
age, and inte-
grate with
other tools.

34 | ECLIPSE REVIEW Winter 2006

8 Tips for Eclipse

CLEAR THE RUNTIME WORKSPACE CACHE
Many people new to plug-in development start with
Eclipse’s Plug-in Development Environment (PDE) per-
spective, use the associated wizards to build the new
plug-in, select the project and select the Run -> Run
As -> Eclipse Application from
the context menu. This launch-
es a runtime version of Eclipse
for testing a plug-in and builds
a launch configuration (called
Eclipse Application) for you that
you can run over and over
again by simply clicking the
Run button (green button with
the white arrow) from the
Workbench tool bar.

This launch configuration is
fine the first time you test your
plug-in. However, after that first

run, you need to modify the launch configuration to
make sure that Eclipse always starts with a fresh run-
time environment. At the very least, you want to have
the option to clear it before you start your testing.
Eclipse caches information about your plug-in when it

starts up so that it doesn’t have
to repeat the effort. However, if
your plug-in crashes on start up,
Eclipse might use the cached
information about it even if you
fix the problem and restart the
environment.

The tip is to make sure that
you are always starting your
runtime Eclipse environment
with a clean workspace. To
make this happen, rather than
selecting Run -> Run As ->
Eclipse Application to start your

6

EXECUTE ANT BUILD FILES FROM
WITHIN A PLUG-IN
The Eclipse SDK comes with many plug-ins containing
classes that you can use when developing your own
plug-ins. While you can execute Ant files to build and
deploy applications, manipulate files, and a number of
other tasks from the Eclipse workbench, how can you
do it programmatically from within your plug-in? It’s
easy. The first step is to add the org.eclipse.ant.core
plug-in to the list of dependencies for your plug-in. You
can do this by selecting the Dependencies tab in the
multi-tab editor that opens when you select your plug-
in’s plugin.xml file.

Next, add the code in Listing 1, or something simi-
lar, to a method that you want to use to execute an

Ant build file. The Ant build file build.xml is then
identified from the project Test as the build file to exe-

cute. There are different ways
to get the location, and this is
just one example. After get-
ting the location, set the
instance of the class
AntRunner to use that file’s
location and then send it the
run message. You can use dif-
ferent monitors to increase
liveliness. However, the
instance of a
NullProgressMonitor will get

you started. Listing 2 provides imports that will
ensure that your code compiles.

If you are using Eclipse resources such as IFile
and IProject to get the project and file paths, add
org.eclipse.core.resources to your plug-in’s list of
dependent plug-ins. If you are using IPath, you will
also need to add org.eclipse.core.runtime as a
dependency.

5

Listing 1 Identifying build.xml as the Ant file to execute

IProgressMonitor monitor = new NullProgressMonitor();
IWorkspaceRoot root = ResourcesPlugin.getWorkspace().getRoot();
IProject project = root.getProject(“Test”)
IFile file = project.getFile(“build.xml”);
IPath path = file.getFullPath();
String fileLocation = path.toOSString();
AntRunner runner = new AntRunner();

runner.setBuildFileLocation(root.getLocation().toOSString() + fileLocation);
runner.run(monitor);

Listing 2 Imports that will ensure the code compiles

import org.eclipse.ant.core.AntRunner;
import org.eclipse.core.runtime.IPath;
import org.eclipse.core.resources.IFile;
import org.eclipse.core.resources.IProject;
import org.eclipse.core.runtime.NullProgressMonitor;
import org.eclipse.core.resources.IWorkspaceRoot;

PUT ON YOUR LAB COAT, START EXPERIMENTING
As with everything in Eclipse, there are many different
ways to do the same thing. I have typically only noted
one solution that addresses each challenge, but in most
cases there are many more. Take time to explore.
Experiment with the IDE. Try new things, test plug-ins,
look for shotcuts. Make the toolchain your own. The
time you invest in mastering Eclipse will repay you
many times over. Perhaps the next Eclipse Review tips
article will come from your keyboard, not mine.

Winter 2006 www.eclipsereview.com | 35

8 Tips for Eclipse

runtime environment, select Run -> Run…
This will bring up a Launch Configuration
wizard, as shown in the figure. Make sure
the Location: entry is set to something other
than your current workspace. The default is
to use a runtime-workspace. Next, check
“Clear workspace data before launching” and
“Ask for confirmation before clearing.” These
selections are not the defaults.

You are now ready to push the Run but-
ton. Provided you answered Yes to clearing
the runtime workspace data, you shouldn’t
experience any side effects from the last
application test. I have seen perfectly good
code fail due to workspace data that was left
over from the previous round of tests. It’s
always hard to debug code that doesn’t really
have any problems, so remember to clear out
the workspace data between tests.

GET TO KNOW THE .LOG FILE
Plug-ins, either ones you are building and testing or
those you downloaded and just installed, fail to
work for all kinds of reasons. Sometimes the reason
is that the plug-in’s plugin.xml file has a wrong
entry. Sometimes it’s because a plug-in can’t find
the other plug-ins it depends on. Other times, the
plug-in throws an exception when it starts. So,
what can you do when your plug-in doesn’t seem
to work?

No matter what the reason is or whether it is a
development or installed plug-in, your first point of
attack is to look at Eclipse’s .log file.

If the problem is with a plug-in you downloaded
and recently installed, go to your ECLIPSE_WORK-
SPACE_DIRECTORY\.metadata directory and look
for the .log file. If the problem is with a plug-in you
are developing, go to your ECLIPSE_RUNTIME
_WORKSPACE_DIRECTORY\.metadata to find the
.log file. In either case, the content of the .log file
will be similar.

What if the .log itself file is missing? It’s a safe
bet that Eclipse had no problems starting. If the .log
file is present, look at its contents for information
about what went wrong. When I am developing
plug-ins, I often get entries like the .log file shown
in Listing 3.

It’s easy to see that the first entry suggests I have
a null pointer in one of my classes. The second
entry shows I have a problem with my DemoPlugin.
Other failures also provide information that is
somewhat helpful. By looking in the .log file, you
will get an idea of what caused the problem. It
might not tell you exactly what the problem is, but
the logged information should give you some idea
of what to do next.

Don’t worry about deleting or clearing the con-
tents of the .log file. If Eclipse detects that there is
no .log file, it will create one when it needs to write
an entry to it. If you just delete the contents,
Eclipse will just write the next entry at the begin-
ning of the file.

7

Listing 3 Finding problems by looking in the .log file

!ENTRY org.eclipse.osgi 2005-08-11 13:51:44.21
!MESSAGE An internal error occurred during: “BankPlugin”.
!STACK 0
java.lang.NullPointerException

at org.bzmedia.test.Bank.run(Bank.java:121)
at org.bzmedia.test.Worker.run(Worker.java:76)

!ENTRY org.eclipse.osgi 2005-08-14 17:21:32.32
!MESSAGE An error occurred while automatically activating bundle Demo (204).
!STACK 0
org.osgi.framework.BundleException: The activator demo.DemoPlugin for bundle Demo is invalid
at org.eclipse.osgi.framework.internal.core.AbstractBundle.loadBundleActivator(AbstractBundle.java:11)
at org.eclipse.osgi.framework.internal.core.BundleContextImpl.start(BundleContextImpl.java:965)

Dwight Deugo is the CEO and Director of Services for Espirity, and is also an
Associate Professor in the School of Computer Science at Carleton University.
The former editor-in-chief of Java Report, he started the Eclipse Technology
Education Project (ECESIS), and is the lead contributor and committer to the
project.

8

subscribe: www.sdtimes.com

BUSINESS
INTELLIGENCE

Bus.Intell. ER 3/7/06 1:57 PM Page 36

http://www.sdtimes.com

subscribe: www.sdtimes.com

BUSINESS
INTELLIGENCE

Bus.Intell. ER 3/7/06 1:57 PM Page 36
The Eclipse Modeling Framework is an open-source
framework and code-generation tool for building plug-
ins and applications based on a structured model.

EMF is similar to other XML-binding frameworks like
XMLBeans in that it provides tooling to help you manipu-
late various instances of a given model. We’ll explore
EMF’s tooling, showing you not only how it works, but
why you’d want to use it. The code examples used
throughout the article are from the library example fea-
tured on EMF’s Web site,
www.eclipse.org/emf.

EMF COMPONENTS
EMF consists of three com-
ponents: EMF (ECore), EMF
Edit and EMF CodeGen. The
core portion of EMF includes
a metamodel, Ecore, for
developing models, as
shown in Figure 1. It has a
runtime that can manipulate
these defined models.

The EMF runtime includes
support for tasks like
XMI/XML model serialization,
reflective model manipulation,
observing changes to a model, and recording changes to a
model.

The Ecore metamodel (which itself is an EMF model)
consists of six fundamental pieces:

• EClass represents a modeled object, and has a list of
attributes (EAttribute) and references (EReference).
It also contains flags to represent whether the mod-
eled object is abstract or an interface.

• EAttribute represents an attribute on a modeled
object.

• EReference is an association between two objects
and has a flag that shows whether the association
represents a containment relationship.

• EDataType represents a modeled object type like

java.util.Date or int.
• EFactory is a factory that can be used to create

instances of your modeled objects (EClass).
• EPackage is a package that can be thought of as a

namespace for modeled objects.
The EMF Edit framework provides generic and reusable

classes for building EMF
model editors.

The first set of classes
EMF Edit provides are con-
tent providers, label
providers, property source
support, and other conven-
ience classes that allow EMF
models to be displayed using
Eclipse-based viewers and
property views.

The second set of classes
includes a command frame-
work that allows EMF-based
editors to execute changes to
model data, with built-in
support for undo and redo.

Also, in case you hadn’t realized it, EMF Edit is plat-
form neutral, which means that these components can be
reused in something like a Swing graphical user interface.

The EMF code generation framework uses a technology
known as Java Emitter Templates (JET) and can generate

n BY CHRIS ANISZCZYK & BORNA SAFABAKHSH

A Grand Tour of the Eclipse
Modeling Framework

From Modeling to Code Generation—And Back

Winter 2006 www.eclipsereview.com | 37

Chris Aniszczyk is a software engineer at IBM’s Austin Labs in the
realm of Tivoli Security. He is a committer on the Eclipse Modeling
Framework Technology / Eclipse Communications Framework (ECF)
projects, and also maintains Planet Eclipse (planet.eclipse.org).

Borna Safabakhsh is a software engineer within the IBM Software
Group. He joined IBM through Extreme Blue after earning a gradu-
ate degree in computer science from the Georgia Institute of
Technology.

EModelElement

EObject

EFactory ENamedElement EAnnotation

ETypedElementEEnumLiteralEClassifierEPackage

EClass EDataType EStructuralFeature EOperation EParameter

EReferenceEAttributeEEnum

Figure 1 The Ecore metamodel

http://www.eclipse.org/emf
http://planet.eclipse.org

everything needed to build a complete EMF-based editor.
JET leverages the Java Development Tooling (JDT) project
in Eclipse to facilitate code generation.

DEVELOPMENT WITH ECORE
In the spirit of flexible efficiency, EMF offers a variety of
avenues for defining an application’s model. This flexi-
bility lets you describe models in the format you find
most comfortable, translating them to Ecore format later.

Using a UML editor capable of exporting an EMF
model, the model can be described as a class diagram,
specifying classes, attributes of those classes, and asso-
ciations. This technique is particularly valuable if UML
design documentation is available or required, because
it provides a visual expression of the model. A UML
class diagram for the library example used in this article
is shown in Figure 2.

If Java code is your preferred means of model
description, EMF lets you annotate existing Java class
and interface definitions. By looking for annotation com-
ments such as @model, and assuming standardized
“getter” and “setter” naming, the EMF parser and gener-

ator can infer model classes, attributes and
references.

As application model design evolves, the
EMF model can be reloaded to detect
changes, and the code merging generator can
create code along with the existing imple-
mentation:

/**
* @model
*/

public interface Book
{

/**
* @model
*/

String getTitle();

/**
* @model default=”100”
*/

int getPages();

/**
* @model
*/

BookCategory getCategory();

/**
* @model opposite=”books”
*/

Writer getAuthor();
}

As a third option, when augmenting exist-
ing XML-based applications with EMF where
an XSD schema describing the model is
already available, you might find it more
convenient to build an Ecore using the exist-
ing XSD.

Finally, and most directly, the document
can be specified in its native XMI format.
While this can this be a useful alternative for

the XML-inclined developer, this technique requires a sig-
nificantly higher level of familiarity with EMF modeling
concepts and is outside the scope of what we’ll cover in
this article.

To help understand Ecore better, the library example
Ecore XMI is shown in Listing 1.

38 | ECLIPSE REVIEW Winter 2006

Modeling with EMF

<?xml version=”1.0” encoding=”UTF-8”?>
<ecore:EPackage xmi:version=”2.0”

xmlns:xmi=”http://www.omg.org/XMI”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xmlns:ecore=”http://www.eclipse.org/emf/2002/Ecore” name=”library”
nsURI=”http:///org/eclipse/example/library.ecore”

nsPrefix=”org.eclipse.example.library”>
<eClassifiers xsi:type=”ecore:EClass” name=”Book”>

<eStructuralFeatures xsi:type=”ecore:EAttribute” name=”title”
eType=”ecore:EDataType
http://www.eclipse.org/emf/2002/Ecore#//EString”/>

<eStructuralFeatures xsi:type=”ecore:EAttribute” name=”pages”
eType=”ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EInt”

defaultValueLiteral=”100”/>
<eStructuralFeatures xsi:type=”ecore:EAttribute” name=”category”

eType=”#//BookCategory”/>
<eStructuralFeatures xsi:type=”ecore:EReference” name=”author”

lowerBound=”1”
eType=”#//Writer” eOpposite=”#//Writer/books”/>

</eClassifiers>
<eClassifiers xsi:type=”ecore:EClass” name=”Library”>

<eStructuralFeatures xsi:type=”ecore:EAttribute” name=”name”
eType=”ecore:EDataType
http://www.eclipse.org/emf/2002/Ecore#//EString”/>

<eStructuralFeatures xsi:type=”ecore:EReference” name=”writers”
upperBound=”-1”

eType=”#//Writer” containment=”true”/>
<eStructuralFeatures xsi:type=”ecore:EReference” name=”books”

upperBound=”-1”
eType=”#//Book” containment=”true”/>

</eClassifiers>
<eClassifiers xsi:type=”ecore:EClass” name=”Writer”>

<eStructuralFeatures xsi:type=”ecore:EAttribute” name=”name”
eType=”ecore:EDataType
http://www.eclipse.org/emf/2002/Ecore#//EString”/>

<eStructuralFeatures xsi:type=”ecore:EReference” name=”books”
upperBound=”-1”

eType=”#//Book” eOpposite=”#//Book/author”/>
</eClassifiers>
<eClassifiers xsi:type=”ecore:EEnum” name=”BookCategory”>

<eLiterals name=”Mystery”/>
<eLiterals name=”ScienceFiction” value=”1”/>
<eLiterals name=”Biography” value=”2”/>

</eClassifiers>
</ecore:EPackage>

<<enumeration>>
Book Category

Library
name : String

Mystery
Science Fiction
Biography

Writer
name : String title : String

pages : int = 100
category : BookCategory

Book
writers

author books

0..*1

0..*

books 0..*

Figure 2 A UML class diagram for the library example

Listing 1 The Ecore XMI Library Example

GENERATING CODE
Regardless of whether the EMF Ecore model was created
based on UML, Java, or XSD, you can generate an EMF
generation model (GenModel) using the EMF project
and file wizards. GenModel itself is an EMF model that
describes the specification for code generation.

While the majority of the information is shared with the
Ecore, GenModel contains advanced parameters that can
be adjusted for custom code-generation scenarios. However,
for standard model implementations, GenModel is more
appropriate. Using GenModel, EMF can generate model
implementation code, additional edit framework code, addi-
tional sample model editor code and model test code.

It’s fairly easy to create EMF model objects based on
a model. After the code is generated to manipulate the
model, EFactory must be obtained to create model
objects via convenience methods, as shown in Listing 2.
The model objects should not be interfaces or abstract.

Every EMF object is also a Notifier that implements
the famous Observer design
pattern for EMF objects. Each
EMF object also has a list of
eAdapters() that can be
thought of as a list of observers
(or adapters). Listing 3 shows
how to print out the title or
name of a book when it is set.

By default, EMF provides an
XML/XMI serialization mecha-
nism for EMF models. Listing 4
creates an EMF resource set and
displays it to standard output.
The output in this case can eas-
ily be redirected to any valid
OutputStream. The serialized
end result is shown in Listing 5.

One of the special features of
EMF is its ability to reflectively
manipulate EMF model objects.
All generated model objects
implement the EObject inter-
face, which provides access to
the metadata of the instance
object in question.

For example, you can use the

reflective API methods eGet() and eSet() to manipulate
object data. This concept of reflective manipulation is
powerful because it allows you to dynamically modify
the instance data of the model as well as the structure
of the EMF model during runtime. Listing 6 uses reflec-
tive manipulation to set the name of a library.

The eAdapters() mechanism offers a way to listen to
model changes. The example in Listing 7 listens to all
notifications in our library model, and Listing 8 shows
sample output that this content adapter would produce
via standard output. You can record models using the
ChangeRecorder class, which lets you determine the
changes that should be allowed in your model. Listing 9
creates a library, attaches a change recorder, records a

Winter 2006 www.eclipsereview.com | 39

Modeling with EMF

Listing 2 Model objectives via convenience methods

// create a library
Library library =
LibraryFactory.eINSTANCE.createLibrary();
library.setName(“The Eclipse Library”);
Writer author =
LibraryFactory.eINSTANCE.createWriter();
author.setName(“Ed Merks”);
Book book = LibraryFactory.eINSTANCE.createBook();
book.setTitle(“Eclipse Modeling Framework”);
book.setAuthor(author);

// add the book to the library
library.getBooks().add(book);

Listing 3 Printing out the title or name of a book

public class TitleAdapter implements Adapter {
public void notifyChanged(Notification notification) {

switch(notification.getFeatureID(Book.class)) {
case LibraryPackage.BOOK_TITLE:

System.out.println(“Title was set to: ” +
notification.getNewValue());

break;
case LibraryPackage.BOOK_NAME:

System.out.println(“Name was set to: “ +
notification.getNewValue());

break;
default:

System.out.println
(“Something else happened!”);

}
}

}
.
// add the title adapter to the list of adapters
myBook.eAdapters().add(new TitleAdapter());

Listing 4 Creating and displaying a EMF resource set
// Create a resource set to hold the resources.
ResourceSet resourceSet = new ResourceSetImpl();
// Register the appropriate resource factory to handle all file extentions.
resourceSet.getResourceFactoryRegistry().getExtensionToFactoryMap().put

(Resource.Factory.Registry.DEFAULT_EXTENSION,
new XMIResourceFactoryImpl());

// Register the package to ensure it is available during loading.
resourceSet.getPackageRegistry().put

(LibraryPackage.eNS_URI,
LibraryPackage.eINSTANCE);

try {
Resource resource =

resourceSet.createResource(URI.createURI(“http:///eclipse.library”));
Library library = LibraryFactory.eINSTANCE.createLibrary();
Book book = LibraryFactory.eINSTANCE.createBook();
book.setTitle(“Eclipse Modeling Framework”);
library.getBooks().add(book);

Writer author = LibraryFactory.eINSTANCE.createWriter();
author.setName(“Ed Merks”);
author.getBooks().add(book);
library.getWriters().add(author);

resource.getContents().add(library);
resource.save(System.out, null);
}

catch (IOException exception) {
exception.printStackTrace();

}

40 | ECLIPSE REVIEW Winter 2006

Modeling with EMF

few changes to the model, then revokes the changes via
the ChangeDescription class.

INTRODUCING EMFT
The Eclipse Modeling Framework Technology project
was announced recently to address experimental EMF
work without disrupting current EMF development.

EMFT projects are intended to add value that is not found
in other modeling frameworks. For example, the EMFT
Transaction framework allows for a transactional model of
resource management in EMF, where framework users can
perform operations on EMF resources in a controlled man-
ner. The framework also integrates with EMFT validation
(described below) to maintain the semantic integrity of
models. The ability to rollback or perform read-only trans-
actions on EMF models is just an example of what this
framework can provide.

EMF already provides a validation framework via the
EValidator API but certain features are lacking. The EMFT
Validation framework provides a method by which live or
batch constraints on EMF metamodels can be defined and
evaluated using a transactional approach. The framework
also makes constraint languages interchange-
able and extendable by third parties. Currently,
Java and the Object Constraint Language (OCL)
can make use of the validation framework.

The EMFT Connected Data Objects
(CDO) framework is an object-persistence
technology that integrates EMF to transpar-
ently store objects in a relational database
system. By default, EMF persists models to
a XMI/XML resource. CDO takes that capa-
bility to the next level, allowing users to
persist EMF resources to a database. This
persistence can be useful in the case of
large models that can benefit from database
storage.

The EMFT Object Constraint Language
framework includes tooling to evaluate OCL

2.0 expressions against EMF models. Using it, models
can be queried for select elements. Constraints can also
be validated against a model.

The final EMFT project that we’ll discuss is the EMFT
Query framework, which provides tooling to construct
and execute SQL-like query statements on EMF-based
models. These query statements offer an easy way to
manipulate models based on a query. For example, if the
model represented a library, this framework could be
used to query the model for all books written by an
author named Ed Merks, as shown in Listing 10.

THE GRAPHICAL MODELING FRAMEWORK PROJECT
The Graphical Modeling Framework (GMF) project offers
a powerful framework for visualization and graphical

Listing 5 The end serialized result created by set output

<?xml version=”1.0” encoding=”ASCII”?>
<org.eclipse.example.library:Library xmi:version=”2.0”
xmlns:xmi=”http://www.omg.org/XMI”
xmlns:org.eclipse.example.library=”http:///org/eclipse/
example/library.ecore”>

<writers name=”Ed Merks” books=”//@books.0”/>
<books title=”Eclipse Modeling Framework”

author=”//@writers.0”/>
</org.eclipse.example.library:Library>

Listing 6 Setting the library name using reflective means

// create a library using the factory
Library library =
LibraryFactory.eINSTANCE.createLibrary();

// reflectively set the name of the library
library.eSet(LibraryPackage.eINSTANCE.getLibrary_Name()
, “The Eclipse Library”);

Listing 7 Listening to notifications in the library model

public void notifyChanged(Notification notification) {
super.notifyChanged(notification);
System.out.println(“Old Value: “ +

notification.getOldValue());
System.out.println(“New Value: “ +

notification.getNewValue());
System.out.println();

}
…
// add the content adapter to the list of adapters
library.eAdapters().add(new MyContentAdapter());

Listing 8 Sample output from the content adapter

// a book was added to the library
Old Value: null
New Value:
org.eclipse.example.library.impl.BookImpl@11121f6
(title: Eclipse Modeling Framework, pages: 100,
category: Mystery)

// the library had its name set initially
Old Value: null
New Value: Old Library Name

// the library had its name set again
Old Value: Old Library Name
New Value: New Library Name

Listing 9 Creating a library and working with a change recorder
Resource resource =
resourceSet.createResource(URI.createURI(“http:///My.library”));
Library library = LibraryFactory.eINSTANCE.createLibrary();
library.setName(“The Eclipse Library”);
resource.getContents().add(library);
List beforeChanges = new ArrayList(resource.getContents());

ChangeRecorder recorder = new ChangeRecorder(resource);

library.setName(“Library of Alexandria”);
Book book = LibraryFactory.eINSTANCE.createBook();
book.setTitle(“My Book”);
library.getBooks().add(book);

ChangeDescription description = recorder.endRecording();
// undo the changes so we are back to our pristine model
description.apply();

editing using an existing
EMF model. In addition to
the domain model of the
application, GMF requires a
few other models to
describe and tailor the gen-
erated graphical editor.

First, a diagram definition
model describes the objects
that are to be visible in the
editor, along with their
appearance. Next, a tooling
definition model describes
the available tools, such as
palette entries, by which the user can interact with the
editor. Finally, a mapping definition model relates ele-
ments from the domain model to elements of the other
models. It then formalizes the mapping between data
elements in the domain and how they are affected by
the interactions of the user with the editor.

Once all of the models are defined, GMF builds a
generation model and generates code that leverages the
GMF runtime, which is based on EMF and GEF. The
advantages that the GMF runtime has over plain GEF is
that it uses a notational model (separation of business
logic from diagram logic), a standard UI for graphical
editors and EMF technologies such as EMFT-Transaction.

Through a combination of EMF, GMF and OCL, a wide

range of advanced capabilities are available to the develop-
er, including constraints, auditing, and even graphical edit-
ing of the editor definition models. GMF builds on model-
driven development practices by providing the tooling nec-
essary to go from defining a domain model to generating
the complete editor necessary to edit that model.

FRAMING THE MODEL
The Eclipse Modeling Frameowrk is a powerful and
mature framework with tooling that can be valuable
whenever you’re manipulating models within Eclipse.
EMF, along with the powerful features inherent in its
subprojects, can shave countless hours of development
time and make our lives just a little bit easier.

Modeling with EMF

Listing 10 Querying the model to find all books by a specific author
// Set up the condition
EObjectCondition condition = new EObjectReferenceValueCondition(

new EObjectTypeRelationCondition(LibraryPackage.eINSTANCE.getBook()),
LibraryPackage.eINSTANCE.getBook_Author(),
new EObjectAttributeValueCondition(
LibraryPackage.eINSTANCE.getWriter_Name(), new StringValue(“Ed Merks”)));

// Construct the query statement
SELECT statement = new SELECT(

new FROM(myEMFResource),
new WHERE(condition));

// Execute and return the query
return statement.execute();
Winter 2006 www.eclipsereview.com | 41

http://www.yoxos.com

It's an Ecosystem!

The Eclipse Foundation was estab-
lished in 2004 as the steward of the
Eclipse ecosystem. A set of bylaws and
governance structure were put in place
to create Eclipse as an open, vendor-
neutral environment where competing
organizations could work together on
on a level playing field.

GOVERNANCE
As a not-for-profit organization, the
Eclipse Foundation has no sharehold-
ers and is not a charity. The Board of
Directors has representatives of the
Strategic members and elected repre-
sentatives of the Add-In Provider and
Committer communities. The board is
responsible for setting the strategy and
policy of the Eclipse Foundation. For
example, the board approves the char-
ters of each top-level Eclipse project.

Mike Milinkovich, the executive
director, is responsible for the opera-
tional aspects of running the Eclipse
Foundation. In addition to Mike, 11
people provide essential services such
as IT infrastructure, development
process refinement, IP due diligence
and ecosystem development.

All Eclipse projects are currently
organized under one of nine top-level
projects. Each top-level project, like
the Web Tools Platform and the Test &
Performance Tools Platform, is respon-
sible for the development, project

management and community building
of its technology and its subprojects.

The Foundation doesn't have devel-
opers on staff nor does it have direct
influence over what is produced with-
in the projects themselves. The project
communities, not the Foundation,
decide what's needed.

FOUNDATION MEMBERS
The Eclipse Foundation is funded
through the annual dues of members.
There are four kinds of membership:

• Strategic members have a strate-
gic interest in the evolution of the
Eclipse technology and want to be
heavily involved in the ecosystem.

• Add-In providers are software
vendors, systems integrators and
other organizations developing tools,
frameworks or applications that make
use of or are built on the Eclipse plat-
form.

• Associate members are media
organizations and not-for-profits
interested in leveraging and promot-
ing Eclipse.

• The incredibly important
Committer members are individuals
who submit code on Eclipse projects.

FOUNDATION SERVICES
The Foundation provides a number of
services to the community. One of the
most visible is running the IT infra-
structure, including the eclipse.org
Web site. This is no easy task when
server page hits are approaching a

trillion since 2004 and terabytes are
downloaded every month.

Although the Foundation does not
employ any developers, we support
the open-source projects and their
Committers in many ways. The pri-
mary developers of the software,
Committers are the lifeblood of the
Eclipse community.

The Foundation helps Committers
by providing the CVS and the
Bugzilla database, newsgroups and
mailing lists. The Foundation also
helps refine the Eclipse Development
Process, which is used on the 60-plus
projects currently under way. The
Eclipse Development Process
describes the guiding principles, the
project life cycle, and the meritocracy
system for working with Committers.

A less visible service, but critical
to companies using Eclipse technolo-
gy, is the due diligence provided on
the intellectual property of all the
Eclipse projects.

Verifying the IP of Eclipse is a
technical and administrative chal-
lenge, with code and other intellectu-
al property being donated by people
and organizations from around the
world. All submissions go through a
rigorous IP process to give everyone
the confidence that they can use and
distribute the technology.

Another important mission is to
promote Eclipse to the community at
large, and work with members to
expand the platform. We do that by
managing press relations, organizing
the annual EclipseCon conference
and other seminars, and hosting or
participating in other events.

The ecosystem surrounding the
Eclipse platform is the result of a
community effort, but the Foundation
also has an important role to play.

We all know that Eclipse is a great open-source commu-
nity that provides a lot of cool, high-quality projects. Not

everyone knows, however, the role the Eclipse Foundation itself
plays in the community. We're often asked who the Foundation
serves, what we do, and how we are funded. Let's talk about those
questions, and explore some of the activities of the Foundation.

PERSPECTIVE
The Present and Future of Eclipse

Donald Smith is Director of Ecosystem
Development for the Eclipse Foundation.

42 | ECLIPSE REVIEW Winter 2006

http://www.softwarefx.com

THREADED APPLICATIONS HELP UNRAVEL THE ORIGINS OF THE UNIVERSE.
Take advantage of the power behind multi-core processors by introducing threading to your
applications. Threading allows you to use hardware parallelism to improve application speeds.
Intel® Software Development Products are on the leading edge of threading technology, giving
you the opportunity to discover the performance potential you need. So whether you create

applications that model the solar system or enable a gaming system, Intel Software Development Products
give your applications the power of parallelism.

Visit www.intel.com/software/products/eclipse for more information.

Copyright © Intel Corporation, 2006. All rights reserved. Intel, the Intel logo, are trademarks of Intel Corporation or its subsidiaries in the United States and other countries. *Other names and
brands may be claimed as the property of others.

 Remember when
the sky was the limit?

With Intel® Software Development Products, the Swinburne Center for
$VWURSK\VLFV�LV�VKRZLQJ�WRGD\·V�NLGV�D�XQLYHUVH�ÀOOHG�ZLWK�XQOLPLWHG�SRVVLELOLWLHV�

http://www.intel.com/software/products/eclipse

